Spaces:
Running
Running
Upload 2 files
Browse files- app.py +11 -9
- externalmod.py +27 -26
app.py
CHANGED
@@ -125,9 +125,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
125 |
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False)
|
126 |
|
127 |
with gr.Row():
|
128 |
-
gen_button = gr.Button('Generate', scale=3)
|
129 |
-
stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
130 |
-
gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
131 |
|
132 |
with gr.Row():
|
133 |
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone",
|
@@ -140,8 +140,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
140 |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit],
|
141 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
142 |
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input,
|
143 |
-
height, width, steps, cfg, seed], outputs=[o]
|
144 |
-
|
|
|
145 |
with gr.Row():
|
146 |
gr.HTML(
|
147 |
"""
|
@@ -170,8 +171,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
170 |
|
171 |
with gr.Row():
|
172 |
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3)
|
173 |
-
stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
174 |
-
gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
175 |
gr.HTML(
|
176 |
"""
|
177 |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
@@ -195,8 +196,9 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css) as demo:
|
|
195 |
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
196 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
197 |
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
198 |
-
height2, width2, steps2, cfg2, seed2], outputs=[o]
|
199 |
-
|
|
|
200 |
with gr.Row():
|
201 |
gr.HTML(
|
202 |
"""
|
|
|
125 |
num_imagesone = gr.Slider(1, max_imagesone, value=max_imagesone, step=1, label='Nobody gets to see this label so I can put here whatever I want!', visible=False)
|
126 |
|
127 |
with gr.Row():
|
128 |
+
gen_button = gr.Button('Generate', variant='primary', scale=3)
|
129 |
+
#stop_button = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
130 |
+
#gen_button.click(lambda: gr.update(interactive=True), None, stop_button)
|
131 |
|
132 |
with gr.Row():
|
133 |
output = [gr.Image(label='', show_download_button=True, elem_classes="outputone",
|
|
|
140 |
gen_event = gr.on(triggers=[gen_button.click, txt_input.submit],
|
141 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
142 |
inputs=[img_in, num_imagesone, model_choice, txt_input, neg_input,
|
143 |
+
height, width, steps, cfg, seed], outputs=[o],
|
144 |
+
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
|
145 |
+
#stop_button.click(lambda: gr.update(interactive = False), None, stop_button, cancels=[gen_event])
|
146 |
with gr.Row():
|
147 |
gr.HTML(
|
148 |
"""
|
|
|
171 |
|
172 |
with gr.Row():
|
173 |
gen_button2 = gr.Button(f'Generate up to {int(max_images)} images in up to 3 minutes total', scale=3)
|
174 |
+
#stop_button2 = gr.Button('Stop', variant='secondary', interactive=False, scale=1)
|
175 |
+
#gen_button2.click(lambda: gr.update(interactive=True), None, stop_button2)
|
176 |
gr.HTML(
|
177 |
"""
|
178 |
<div style="text-align: center; max-width: 1200px; margin: 0 auto;">
|
|
|
196 |
gen_event2 = gr.on(triggers=[gen_button2.click, txt_input2.submit],
|
197 |
fn=lambda i, n, m, t1, t2, n1, n2, n3, n4, n5: gen_fn(m, t1, t2, n1, n2, n3, n4, n5) if (i < n) else None,
|
198 |
inputs=[img_i, num_images, model_choice2, txt_input2, neg_input2,
|
199 |
+
height2, width2, steps2, cfg2, seed2], outputs=[o],
|
200 |
+
concurrency_limit=None, queue=False) # Be sure to delete ", queue=False" when activating the stop button
|
201 |
+
#stop_button2.click(lambda: gr.update(interactive=False), None, stop_button2, cancels=[gen_event2])
|
202 |
with gr.Row():
|
203 |
gr.HTML(
|
204 |
"""
|
externalmod.py
CHANGED
@@ -9,7 +9,7 @@ import re
|
|
9 |
import tempfile
|
10 |
import warnings
|
11 |
from pathlib import Path
|
12 |
-
from typing import TYPE_CHECKING, Callable
|
13 |
|
14 |
import httpx
|
15 |
import huggingface_hub
|
@@ -33,6 +33,7 @@ if TYPE_CHECKING:
|
|
33 |
from gradio.interface import Interface
|
34 |
|
35 |
|
|
|
36 |
server_timeout = 600
|
37 |
|
38 |
|
@@ -40,7 +41,7 @@ server_timeout = 600
|
|
40 |
def load(
|
41 |
name: str,
|
42 |
src: str | None = None,
|
43 |
-
hf_token: str | None = None,
|
44 |
alias: str | None = None,
|
45 |
**kwargs,
|
46 |
) -> Blocks:
|
@@ -51,7 +52,7 @@ def load(
|
|
51 |
Parameters:
|
52 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
53 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
54 |
-
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide
|
55 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
56 |
Returns:
|
57 |
a Gradio Blocks object for the given model
|
@@ -68,7 +69,7 @@ def load(
|
|
68 |
def load_blocks_from_repo(
|
69 |
name: str,
|
70 |
src: str | None = None,
|
71 |
-
hf_token: str | None = None,
|
72 |
alias: str | None = None,
|
73 |
**kwargs,
|
74 |
) -> Blocks:
|
@@ -92,7 +93,7 @@ def load_blocks_from_repo(
|
|
92 |
if src.lower() not in factory_methods:
|
93 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
94 |
|
95 |
-
if hf_token is not None:
|
96 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
97 |
warnings.warn(
|
98 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
@@ -103,12 +104,16 @@ def load_blocks_from_repo(
|
|
103 |
return blocks
|
104 |
|
105 |
|
106 |
-
def from_model(
|
|
|
|
|
107 |
model_url = f"https://huggingface.co/{model_name}"
|
108 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
109 |
print(f"Fetching model from: {model_url}")
|
110 |
|
111 |
-
headers =
|
|
|
|
|
112 |
response = httpx.request("GET", api_url, headers=headers)
|
113 |
if response.status_code != 200:
|
114 |
raise ModelNotFoundError(
|
@@ -371,7 +376,11 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
371 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
372 |
if preprocess is not None:
|
373 |
data = preprocess(*data)
|
374 |
-
|
|
|
|
|
|
|
|
|
375 |
if postprocess is not None:
|
376 |
data = postprocess(data) # type: ignore
|
377 |
return data
|
@@ -383,7 +392,7 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
383 |
"inputs": inputs,
|
384 |
"outputs": outputs,
|
385 |
"title": model_name,
|
386 |
-
|
387 |
}
|
388 |
|
389 |
kwargs = dict(interface_info, **kwargs)
|
@@ -394,19 +403,12 @@ def from_model(model_name: str, hf_token: str | None, alias: str | None, **kwarg
|
|
394 |
def from_spaces(
|
395 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
396 |
) -> Blocks:
|
397 |
-
client = Client(
|
398 |
-
space_name,
|
399 |
-
hf_token=hf_token,
|
400 |
-
download_files=False,
|
401 |
-
_skip_components=False,
|
402 |
-
)
|
403 |
-
|
404 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
405 |
|
406 |
print(f"Fetching Space from: {space_url}")
|
407 |
|
408 |
headers = {}
|
409 |
-
if hf_token
|
410 |
headers["Authorization"] = f"Bearer {hf_token}"
|
411 |
|
412 |
iframe_url = (
|
@@ -443,8 +445,7 @@ def from_spaces(
|
|
443 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
444 |
"https://gradio.app/using_blocks_like_functions/"
|
445 |
)
|
446 |
-
|
447 |
-
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
448 |
|
449 |
|
450 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
@@ -489,7 +490,7 @@ def from_spaces_interface(
|
|
489 |
config = external_utils.streamline_spaces_interface(config)
|
490 |
api_url = f"{iframe_url}/api/predict/"
|
491 |
headers = {"Content-Type": "application/json"}
|
492 |
-
if hf_token
|
493 |
headers["Authorization"] = f"Bearer {hf_token}"
|
494 |
|
495 |
# The function should call the API with preprocessed data
|
@@ -529,7 +530,7 @@ def gr_Interface_load(
|
|
529 |
src: str | None = None,
|
530 |
hf_token: str | None = None,
|
531 |
alias: str | None = None,
|
532 |
-
**kwargs,
|
533 |
) -> Blocks:
|
534 |
try:
|
535 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
@@ -543,8 +544,8 @@ def list_uniq(l):
|
|
543 |
|
544 |
|
545 |
def get_status(model_name: str):
|
546 |
-
from huggingface_hub import
|
547 |
-
client =
|
548 |
return client.get_model_status(model_name)
|
549 |
|
550 |
|
@@ -563,20 +564,20 @@ def is_loadable(model_name: str, force_gpu: bool = False):
|
|
563 |
|
564 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
565 |
from huggingface_hub import HfApi
|
566 |
-
api = HfApi()
|
567 |
default_tags = ["diffusers"]
|
568 |
if not sort: sort = "last_modified"
|
569 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
570 |
models = []
|
571 |
try:
|
572 |
-
model_infos = api.list_models(author=author, task="text-to-image",
|
573 |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
574 |
except Exception as e:
|
575 |
print(f"Error: Failed to list models.")
|
576 |
print(e)
|
577 |
return models
|
578 |
for model in model_infos:
|
579 |
-
if not model.private and not model.gated:
|
580 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
581 |
if not_tag and not_tag in model.tags or not loadable: continue
|
582 |
models.append(model.id)
|
|
|
9 |
import tempfile
|
10 |
import warnings
|
11 |
from pathlib import Path
|
12 |
+
from typing import TYPE_CHECKING, Callable, Literal
|
13 |
|
14 |
import httpx
|
15 |
import huggingface_hub
|
|
|
33 |
from gradio.interface import Interface
|
34 |
|
35 |
|
36 |
+
HF_TOKEN = os.environ.get("HF_TOKEN") if os.environ.get("HF_TOKEN") else None # If private or gated models aren't used, ENV setting is unnecessary.
|
37 |
server_timeout = 600
|
38 |
|
39 |
|
|
|
41 |
def load(
|
42 |
name: str,
|
43 |
src: str | None = None,
|
44 |
+
hf_token: str | Literal[False] | None = None,
|
45 |
alias: str | None = None,
|
46 |
**kwargs,
|
47 |
) -> Blocks:
|
|
|
52 |
Parameters:
|
53 |
name: the name of the model (e.g. "gpt2" or "facebook/bart-base") or space (e.g. "flax-community/spanish-gpt2"), can include the `src` as prefix (e.g. "models/facebook/bart-base")
|
54 |
src: the source of the model: `models` or `spaces` (or leave empty if source is provided as a prefix in `name`)
|
55 |
+
hf_token: optional access token for loading private Hugging Face Hub models or spaces. Will default to the locally saved token if not provided. Pass `token=False` if you don't want to send your token to the server. Find your token here: https://huggingface.co/settings/tokens. Warning: only provide a token if you are loading a trusted private Space as it can be read by the Space you are loading.
|
56 |
alias: optional string used as the name of the loaded model instead of the default name (only applies if loading a Space running Gradio 2.x)
|
57 |
Returns:
|
58 |
a Gradio Blocks object for the given model
|
|
|
69 |
def load_blocks_from_repo(
|
70 |
name: str,
|
71 |
src: str | None = None,
|
72 |
+
hf_token: str | Literal[False] | None = None,
|
73 |
alias: str | None = None,
|
74 |
**kwargs,
|
75 |
) -> Blocks:
|
|
|
93 |
if src.lower() not in factory_methods:
|
94 |
raise ValueError(f"parameter: src must be one of {factory_methods.keys()}")
|
95 |
|
96 |
+
if hf_token is not None and hf_token is not False:
|
97 |
if Context.hf_token is not None and Context.hf_token != hf_token:
|
98 |
warnings.warn(
|
99 |
"""You are loading a model/Space with a different access token than the one you used to load a previous model/Space. This is not recommended, as it may cause unexpected behavior."""
|
|
|
104 |
return blocks
|
105 |
|
106 |
|
107 |
+
def from_model(
|
108 |
+
model_name: str, hf_token: str | Literal[False] | None, alias: str | None, **kwargs
|
109 |
+
):
|
110 |
model_url = f"https://huggingface.co/{model_name}"
|
111 |
api_url = f"https://api-inference.huggingface.co/models/{model_name}"
|
112 |
print(f"Fetching model from: {model_url}")
|
113 |
|
114 |
+
headers = (
|
115 |
+
{} if hf_token in [False, None] else {"Authorization": f"Bearer {hf_token}"}
|
116 |
+
)
|
117 |
response = httpx.request("GET", api_url, headers=headers)
|
118 |
if response.status_code != 200:
|
119 |
raise ModelNotFoundError(
|
|
|
376 |
def query_huggingface_inference_endpoints(*data, **kwargs):
|
377 |
if preprocess is not None:
|
378 |
data = preprocess(*data)
|
379 |
+
try:
|
380 |
+
data = fn(*data, **kwargs) # type: ignore
|
381 |
+
except huggingface_hub.utils.HfHubHTTPError as e:
|
382 |
+
if "429" in str(e):
|
383 |
+
raise TooManyRequestsError() from e
|
384 |
if postprocess is not None:
|
385 |
data = postprocess(data) # type: ignore
|
386 |
return data
|
|
|
392 |
"inputs": inputs,
|
393 |
"outputs": outputs,
|
394 |
"title": model_name,
|
395 |
+
#"examples": examples,
|
396 |
}
|
397 |
|
398 |
kwargs = dict(interface_info, **kwargs)
|
|
|
403 |
def from_spaces(
|
404 |
space_name: str, hf_token: str | None, alias: str | None, **kwargs
|
405 |
) -> Blocks:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
406 |
space_url = f"https://huggingface.co/spaces/{space_name}"
|
407 |
|
408 |
print(f"Fetching Space from: {space_url}")
|
409 |
|
410 |
headers = {}
|
411 |
+
if hf_token not in [False, None]:
|
412 |
headers["Authorization"] = f"Bearer {hf_token}"
|
413 |
|
414 |
iframe_url = (
|
|
|
445 |
"Blocks or Interface locally. You may find this Guide helpful: "
|
446 |
"https://gradio.app/using_blocks_like_functions/"
|
447 |
)
|
448 |
+
return from_spaces_blocks(space=space_name, hf_token=hf_token)
|
|
|
449 |
|
450 |
|
451 |
def from_spaces_blocks(space: str, hf_token: str | None) -> Blocks:
|
|
|
490 |
config = external_utils.streamline_spaces_interface(config)
|
491 |
api_url = f"{iframe_url}/api/predict/"
|
492 |
headers = {"Content-Type": "application/json"}
|
493 |
+
if hf_token not in [False, None]:
|
494 |
headers["Authorization"] = f"Bearer {hf_token}"
|
495 |
|
496 |
# The function should call the API with preprocessed data
|
|
|
530 |
src: str | None = None,
|
531 |
hf_token: str | None = None,
|
532 |
alias: str | None = None,
|
533 |
+
**kwargs, # ignore
|
534 |
) -> Blocks:
|
535 |
try:
|
536 |
return load_blocks_from_repo(name, src, hf_token, alias)
|
|
|
544 |
|
545 |
|
546 |
def get_status(model_name: str):
|
547 |
+
from huggingface_hub import AsyncInferenceClient
|
548 |
+
client = AsyncInferenceClient(token=HF_TOKEN, timeout=10)
|
549 |
return client.get_model_status(model_name)
|
550 |
|
551 |
|
|
|
564 |
|
565 |
def find_model_list(author: str="", tags: list[str]=[], not_tag="", sort: str="last_modified", limit: int=30, force_gpu=False, check_status=False):
|
566 |
from huggingface_hub import HfApi
|
567 |
+
api = HfApi(token=HF_TOKEN)
|
568 |
default_tags = ["diffusers"]
|
569 |
if not sort: sort = "last_modified"
|
570 |
limit = limit * 20 if check_status and force_gpu else limit * 5
|
571 |
models = []
|
572 |
try:
|
573 |
+
model_infos = api.list_models(author=author, #task="text-to-image",
|
574 |
tags=list_uniq(default_tags + tags), cardData=True, sort=sort, limit=limit)
|
575 |
except Exception as e:
|
576 |
print(f"Error: Failed to list models.")
|
577 |
print(e)
|
578 |
return models
|
579 |
for model in model_infos:
|
580 |
+
if not model.private and not model.gated or HF_TOKEN is not None:
|
581 |
loadable = is_loadable(model.id, force_gpu) if check_status else True
|
582 |
if not_tag and not_tag in model.tags or not loadable: continue
|
583 |
models.append(model.id)
|