|
import gradio as gr |
|
from matplotlib import pyplot as plt |
|
from mapper.utils.io import read_image |
|
from mapper.utils.exif import EXIF |
|
from mapper.utils.wrappers import Camera |
|
from mapper.data.image import rectify_image, pad_image, resize_image |
|
from mapper.utils.viz_2d import one_hot_argmax_to_rgb, plot_images |
|
from mapper.module import GenericModule |
|
from perspective2d import PerspectiveFields |
|
import torch |
|
import numpy as np |
|
from typing import Optional, Tuple |
|
from omegaconf import OmegaConf |
|
|
|
description = """ |
|
<h1 align="center"> |
|
<ins>MapItAnywhere (MIA) </ins> |
|
<br> |
|
Empowering Bird’s Eye View Mapping using Large-scale Public Data |
|
<br> |
|
<h3 align="center"> |
|
<a href="https://mapitanywhere.github.io" target="_blank">Project Page</a> | |
|
<a href="https://arxiv.org/abs/2109.08203" target="_blank">Paper</a> | |
|
<a href="https://github.com/MapItAnywhere/MapItAnywhere" target="_blank">Code</a> |
|
</h3> |
|
<p align="center"> |
|
Mapper generates birds-eye-view maps from in-the-wild monocular first-person view images. You can try our demo by uploading your images or using the examples provided. Tip: You can also try out images across the world using <a href="https://www.mapillary.com/app" target="_blank">Mapillary</a> 😉 Also try out some examples that are taken in cities we have not trained on! |
|
</p> |
|
""" |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
cfg = OmegaConf.load("config.yaml") |
|
|
|
class ImageCalibrator(PerspectiveFields): |
|
def __init__(self, version: str = "Paramnet-360Cities-edina-centered"): |
|
super().__init__(version) |
|
self.eval() |
|
|
|
def run( |
|
self, |
|
image_rgb: np.ndarray, |
|
focal_length: Optional[float] = None, |
|
exif: Optional[EXIF] = None, |
|
) -> Tuple[Tuple[float, float], Camera]: |
|
h, w, *_ = image_rgb.shape |
|
if focal_length is None and exif is not None: |
|
_, focal_ratio = exif.extract_focal() |
|
if focal_ratio != 0: |
|
focal_length = focal_ratio * max(h, w) |
|
calib = self.inference(img_bgr=image_rgb[..., ::-1]) |
|
roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item()) |
|
if focal_length is None: |
|
vfov = calib["pred_vfov"].item() |
|
focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2) |
|
|
|
camera = Camera.from_dict( |
|
{ |
|
"model": "SIMPLE_PINHOLE", |
|
"width": w, |
|
"height": h, |
|
"params": [focal_length, w / 2 + 0.5, h / 2 + 0.5], |
|
} |
|
) |
|
return roll_pitch, camera |
|
|
|
def preprocess_pipeline(image, roll_pitch, camera): |
|
image = torch.from_numpy(image).float() / 255 |
|
image = image.permute(2, 0, 1).to(device) |
|
camera = camera.to(device) |
|
|
|
image, valid = rectify_image(image, camera.float(), -roll_pitch[0], -roll_pitch[1]) |
|
|
|
roll_pitch *= 0 |
|
|
|
image, _, camera, valid = resize_image( |
|
image=image, |
|
size=512, |
|
camera=camera, |
|
fn=max, |
|
valid=valid |
|
) |
|
|
|
|
|
|
|
|
|
|
|
camera = torch.stack([camera]) |
|
|
|
return { |
|
"image": image.unsqueeze(0).to(device), |
|
"valid": valid.unsqueeze(0).to(device), |
|
"camera": camera.float().to(device), |
|
} |
|
|
|
|
|
calibrator = ImageCalibrator().to(device) |
|
model = GenericModule(cfg) |
|
model = model.load_from_checkpoint("trained_weights/mapper-excl-ood.ckpt", strict=False, cfg=cfg) |
|
model = model.to(device) |
|
model = model.eval() |
|
|
|
def run(input_img): |
|
image_path = input_img.name |
|
|
|
image = read_image(image_path) |
|
with open(image_path, "rb") as fid: |
|
exif = EXIF(fid, lambda: image.shape[:2]) |
|
|
|
gravity, camera = calibrator.run(image, exif=exif) |
|
|
|
data = preprocess_pipeline(image, gravity, camera) |
|
res = model(data) |
|
|
|
prediction = res['output'] |
|
rgb_prediction = one_hot_argmax_to_rgb(prediction, 6).squeeze(0).permute(1, 2, 0).cpu().long().numpy() |
|
valid = res['valid_bev'].squeeze(0)[..., :-1] |
|
rgb_prediction[~valid.cpu().numpy()] = 255 |
|
|
|
|
|
|
|
plot_images([image, rgb_prediction], titles=["Input Image", "Top-Down Prediction"], pad=2, adaptive=True) |
|
|
|
return plt.gcf() |
|
|
|
|
|
examples = [ |
|
["examples/left_crossing.jpg"], |
|
["examples/crossing.jpg"], |
|
["examples/two_roads.jpg"], |
|
["examples/japan_narrow_road.jpeg"], |
|
["examples/zurich_crossing.jpg"], |
|
["examples/night_road.jpg"], |
|
["examples/night_crossing.jpg"], |
|
] |
|
|
|
demo = gr.Interface( |
|
fn=run, |
|
inputs=[ |
|
gr.File(file_types=["image"], label="Input Image") |
|
], |
|
outputs=[ |
|
gr.Plot(label="Prediction", format="png"), |
|
], |
|
description=description, |
|
examples=examples) |
|
demo.launch(share=True, server_name="0.0.0.0") |
|
|