Mapper / app.py
John6666's picture
Update app.py
2a7d1a5 verified
raw
history blame
4.78 kB
import gradio as gr
from matplotlib import pyplot as plt
from mapper.utils.io import read_image
from mapper.utils.exif import EXIF
from mapper.utils.wrappers import Camera
from mapper.data.image import rectify_image, pad_image, resize_image
from mapper.utils.viz_2d import one_hot_argmax_to_rgb, plot_images
from mapper.module import GenericModule
from perspective2d import PerspectiveFields
import torch
import numpy as np
from typing import Optional, Tuple
from omegaconf import OmegaConf
description = """
<h1 align="center">
<ins>MapItAnywhere (MIA) </ins>
<br>
Empowering Bird’s Eye View Mapping using Large-scale Public Data
<br>
<h3 align="center">
<a href="https://mapitanywhere.github.io" target="_blank">Project Page</a> |
<a href="https://arxiv.org/abs/2109.08203" target="_blank">Paper</a> |
<a href="https://github.com/MapItAnywhere/MapItAnywhere" target="_blank">Code</a>
</h3>
<p align="center">
Mapper generates birds-eye-view maps from in-the-wild monocular first-person view images. You can try our demo by uploading your images or using the examples provided. Tip: You can also try out images across the world using <a href="https://www.mapillary.com/app" target="_blank">Mapillary</a> &#128521; Also try out some examples that are taken in cities we have not trained on!
</p>
"""
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cfg = OmegaConf.load("config.yaml")
class ImageCalibrator(PerspectiveFields):
def __init__(self, version: str = "Paramnet-360Cities-edina-centered"):
super().__init__(version)
self.eval()
def run(
self,
image_rgb: np.ndarray,
focal_length: Optional[float] = None,
exif: Optional[EXIF] = None,
) -> Tuple[Tuple[float, float], Camera]:
h, w, *_ = image_rgb.shape
if focal_length is None and exif is not None:
_, focal_ratio = exif.extract_focal()
if focal_ratio != 0:
focal_length = focal_ratio * max(h, w)
calib = self.inference(img_bgr=image_rgb[..., ::-1])
roll_pitch = (calib["pred_roll"].item(), calib["pred_pitch"].item())
if focal_length is None:
vfov = calib["pred_vfov"].item()
focal_length = h / 2 / np.tan(np.deg2rad(vfov) / 2)
camera = Camera.from_dict(
{
"model": "SIMPLE_PINHOLE",
"width": w,
"height": h,
"params": [focal_length, w / 2 + 0.5, h / 2 + 0.5],
}
)
return roll_pitch, camera
def preprocess_pipeline(image, roll_pitch, camera):
image = torch.from_numpy(image).float() / 255
image = image.permute(2, 0, 1).to(device)
camera = camera.to(device)
image, valid = rectify_image(image, camera.float(), -roll_pitch[0], -roll_pitch[1])
roll_pitch *= 0
image, _, camera, valid = resize_image(
image=image,
size=512,
camera=camera,
fn=max,
valid=valid
)
# image, valid, camera = pad_image(
# image, 512, camera, valid
# )
camera = torch.stack([camera])
return {
"image": image.unsqueeze(0).to(device),
"valid": valid.unsqueeze(0).to(device),
"camera": camera.float().to(device),
}
calibrator = ImageCalibrator().to(device)
model = GenericModule(cfg)
model = model.load_from_checkpoint("trained_weights/mapper-excl-ood.ckpt", strict=False, cfg=cfg)
model = model.to(device)
model = model.eval()
def run(input_img):
image_path = input_img.name
image = read_image(image_path)
with open(image_path, "rb") as fid:
exif = EXIF(fid, lambda: image.shape[:2])
gravity, camera = calibrator.run(image, exif=exif)
data = preprocess_pipeline(image, gravity, camera)
res = model(data)
prediction = res['output']
rgb_prediction = one_hot_argmax_to_rgb(prediction, 6).squeeze(0).permute(1, 2, 0).cpu().long().numpy()
valid = res['valid_bev'].squeeze(0)[..., :-1]
rgb_prediction[~valid.cpu().numpy()] = 255
# TODO: add legend here
plot_images([image, rgb_prediction], titles=["Input Image", "Top-Down Prediction"], pad=2, adaptive=True)
return plt.gcf()
examples = [
["examples/left_crossing.jpg"],
["examples/crossing.jpg"],
["examples/two_roads.jpg"],
["examples/japan_narrow_road.jpeg"],
["examples/zurich_crossing.jpg"],
["examples/night_road.jpg"],
["examples/night_crossing.jpg"],
]
demo = gr.Interface(
fn=run,
inputs=[
gr.File(file_types=["image"], label="Input Image")
],
outputs=[
gr.Plot(label="Prediction", format="png"),
],
description=description,
examples=examples)
demo.launch(share=True, server_name="0.0.0.0")