Spaces:
Runtime error
Runtime error
| # Open Source Model Licensed under the Apache License Version 2.0 and Other Licenses of the Third-Party Components therein: | |
| # The below Model in this distribution may have been modified by THL A29 Limited ("Tencent Modifications"). All Tencent Modifications are Copyright (C) 2024 THL A29 Limited. | |
| # Copyright (C) 2024 THL A29 Limited, a Tencent company. All rights reserved. | |
| # The below software and/or models in this distribution may have been | |
| # modified by THL A29 Limited ("Tencent Modifications"). | |
| # All Tencent Modifications are Copyright (C) THL A29 Limited. | |
| # Hunyuan 3D is licensed under the TENCENT HUNYUAN NON-COMMERCIAL LICENSE AGREEMENT | |
| # except for the third-party components listed below. | |
| # Hunyuan 3D does not impose any additional limitations beyond what is outlined | |
| # in the repsective licenses of these third-party components. | |
| # Users must comply with all terms and conditions of original licenses of these third-party | |
| # components and must ensure that the usage of the third party components adheres to | |
| # all relevant laws and regulations. | |
| # For avoidance of doubts, Hunyuan 3D means the large language models and | |
| # their software and algorithms, including trained model weights, parameters (including | |
| # optimizer states), machine-learning model code, inference-enabling code, training-enabling code, | |
| # fine-tuning enabling code and other elements of the foregoing made publicly available | |
| # by Tencent in accordance with TENCENT HUNYUAN COMMUNITY LICENSE AGREEMENT. | |
| import math | |
| import numpy | |
| import torch | |
| import inspect | |
| import warnings | |
| from PIL import Image | |
| from einops import rearrange | |
| import torch.nn.functional as F | |
| from diffusers.utils.torch_utils import randn_tensor | |
| from diffusers.configuration_utils import FrozenDict | |
| from diffusers.image_processor import VaeImageProcessor | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| from diffusers.models import AutoencoderKL, UNet2DConditionModel | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.pipelines.pipeline_utils import DiffusionPipeline | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput | |
| from diffusers import DDPMScheduler, EulerAncestralDiscreteScheduler, ImagePipelineOutput | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| LoraLoaderMixin, | |
| TextualInversionLoaderMixin | |
| ) | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPTextModel, | |
| CLIPTokenizer, | |
| CLIPVisionModelWithProjection | |
| ) | |
| from diffusers.models.attention_processor import ( | |
| Attention, | |
| AttnProcessor, | |
| XFormersAttnProcessor, | |
| AttnProcessor2_0 | |
| ) | |
| from .utils import to_rgb_image, white_out_background, recenter_img | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from here import Hunyuan3d_MVD_Qing_Pipeline | |
| >>> pipe = Hunyuan3d_MVD_Qing_Pipeline.from_pretrained( | |
| ... "Tencent-Hunyuan-3D/MVD-Qing", torch_dtype=torch.float16 | |
| ... ) | |
| >>> pipe.to("cuda") | |
| >>> img = Image.open("demo.png") | |
| >>> res_img = pipe(img).images[0] | |
| """ | |
| def unscale_latents(latents): return latents / 0.75 + 0.22 | |
| def unscale_image (image ): return image / 0.50 * 0.80 | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| class ReferenceOnlyAttnProc(torch.nn.Module): | |
| # reference attention | |
| def __init__(self, chained_proc, enabled=False, name=None): | |
| super().__init__() | |
| self.enabled = enabled | |
| self.chained_proc = chained_proc | |
| self.name = name | |
| def __call__(self, attn, hidden_states, encoder_hidden_states=None, attention_mask=None, mode="w", ref_dict=None): | |
| if encoder_hidden_states is None: encoder_hidden_states = hidden_states | |
| if self.enabled: | |
| if mode == 'w': | |
| ref_dict[self.name] = encoder_hidden_states | |
| elif mode == 'r': | |
| encoder_hidden_states = torch.cat([encoder_hidden_states, ref_dict.pop(self.name)], dim=1) | |
| res = self.chained_proc(attn, hidden_states, encoder_hidden_states, attention_mask) | |
| return res | |
| # class RowWiseAttnProcessor2_0: | |
| # def __call__(self, attn, | |
| # hidden_states, | |
| # encoder_hidden_states=None, | |
| # attention_mask=None, | |
| # temb=None, | |
| # num_views=6, | |
| # *args, | |
| # **kwargs): | |
| # residual = hidden_states | |
| # if attn.spatial_norm is not None: hidden_states = attn.spatial_norm(hidden_states, temb) | |
| # input_ndim = hidden_states.ndim | |
| # if input_ndim == 4: | |
| # batch_size, channel, height, width = hidden_states.shape | |
| # hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2) | |
| # if encoder_hidden_states is None: | |
| # batch_size, sequence_length, _ = hidden_states.shape | |
| # else: | |
| # batch_size, sequence_length, _ = encoder_hidden_states.shape | |
| # if attention_mask is not None: | |
| # attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size) | |
| # attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1]) | |
| # if attn.group_norm is not None: hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2) | |
| # query = attn.to_q(hidden_states) | |
| # if encoder_hidden_states is None: encoder_hidden_states = hidden_states | |
| # elif attn.norm_cross: encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states) | |
| # # encoder_hidden_states [B, 6hw+hw, C] if ref att | |
| # key = attn.to_k(encoder_hidden_states) # [B, Vhw+hw, C] | |
| # value = attn.to_v(encoder_hidden_states) # [B, Vhw+hw, C] | |
| # mv_flag = hidden_states.shape[1] < encoder_hidden_states.shape[1] and encoder_hidden_states.shape[1] != 77 | |
| # if mv_flag: | |
| # target_size = int(math.sqrt(hidden_states.shape[1] // num_views)) | |
| # assert target_size ** 2 * num_views == hidden_states.shape[1] | |
| # gen_key = key[:, :num_views*target_size*target_size, :] | |
| # ref_key = key[:, num_views*target_size*target_size:, :] | |
| # gen_value = value[:, :num_views*target_size*target_size, :] | |
| # ref_value = value[:, num_views*target_size*target_size:, :] | |
| # # rowwise attention | |
| # query, gen_key, gen_value = \ | |
| # rearrange( query, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", | |
| # v1=num_views//2, v2=2, h=target_size, w=target_size), \ | |
| # rearrange( gen_key, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", | |
| # v1=num_views//2, v2=2, h=target_size, w=target_size), \ | |
| # rearrange(gen_value, "b (v1 h v2 w) c -> (b h) (v1 v2 w) c", | |
| # v1=num_views//2, v2=2, h=target_size, w=target_size) | |
| # inner_dim = key.shape[-1] | |
| # ref_size = int(math.sqrt(ref_key.shape[1])) | |
| # ref_key_expanded = ref_key.view(batch_size, 1, ref_size * ref_size, inner_dim) | |
| # ref_key_expanded = ref_key_expanded.expand(-1, target_size, -1, -1).contiguous() | |
| # ref_key_expanded = ref_key_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim) | |
| # key = torch.cat([ gen_key, ref_key_expanded], dim=1) | |
| # ref_value_expanded = ref_value.view(batch_size, 1, ref_size * ref_size, inner_dim) | |
| # ref_value_expanded = ref_value_expanded.expand(-1, target_size, -1, -1).contiguous() | |
| # ref_value_expanded = ref_value_expanded.view(batch_size * target_size, ref_size * ref_size, inner_dim) | |
| # value = torch.cat([gen_value, ref_value_expanded], dim=1) | |
| # h = target_size | |
| # else: | |
| # target_size = int(math.sqrt(hidden_states.shape[1])) | |
| # h = 1 | |
| # num_views = 1 | |
| # inner_dim = key.shape[-1] | |
| # head_dim = inner_dim // attn.heads | |
| # query = query.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2) | |
| # key = key.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2) | |
| # value = value.view(batch_size * h, -1, attn.heads, head_dim).transpose(1, 2) | |
| # hidden_states = F.scaled_dot_product_attention(query, key, value, | |
| # attn_mask=attention_mask, | |
| # dropout_p=0.0, | |
| # is_causal=False) | |
| # hidden_states = hidden_states.transpose(1, 2).reshape(batch_size * h, | |
| # -1, | |
| # attn.heads * head_dim).to(query.dtype) | |
| # hidden_states = attn.to_out[1](attn.to_out[0](hidden_states)) | |
| # if mv_flag: hidden_states = rearrange(hidden_states, "(b h) (v1 v2 w) c -> b (v1 h v2 w) c", | |
| # b=batch_size, v1=num_views//2, | |
| # v2=2, h=target_size, w=target_size) | |
| # if input_ndim == 4: | |
| # hidden_states = hidden_states.transpose(-1, -2) | |
| # hidden_states = hidden_states.reshape(batch_size, | |
| # channel, | |
| # target_size, | |
| # target_size) | |
| # if attn.residual_connection: hidden_states = hidden_states + residual | |
| # hidden_states = hidden_states / attn.rescale_output_factor | |
| # return hidden_states | |
| class RefOnlyNoisedUNet(torch.nn.Module): | |
| def __init__(self, unet, train_sched, val_sched): | |
| super().__init__() | |
| self.unet = unet | |
| self.train_sched = train_sched | |
| self.val_sched = val_sched | |
| unet_lora_attn_procs = dict() | |
| for name, _ in unet.attn_processors.items(): | |
| unet_lora_attn_procs[name] = ReferenceOnlyAttnProc(AttnProcessor2_0(), | |
| enabled=name.endswith("attn1.processor"), | |
| name=name) | |
| unet.set_attn_processor(unet_lora_attn_procs) | |
| def __getattr__(self, name: str): | |
| try: | |
| return super().__getattr__(name) | |
| except AttributeError: | |
| return getattr(self.unet, name) | |
| def forward(self, sample, timestep, encoder_hidden_states, *args, cross_attention_kwargs, **kwargs): | |
| cond_lat = cross_attention_kwargs['cond_lat'] | |
| noise = torch.randn_like(cond_lat) | |
| if self.training: | |
| noisy_cond_lat = self.train_sched.add_noise(cond_lat, noise, timestep) | |
| noisy_cond_lat = self.train_sched.scale_model_input(noisy_cond_lat, timestep) | |
| else: | |
| noisy_cond_lat = self.val_sched.add_noise(cond_lat, noise, timestep.reshape(-1)) | |
| noisy_cond_lat = self.val_sched.scale_model_input(noisy_cond_lat, timestep.reshape(-1)) | |
| ref_dict = {} | |
| self.unet(noisy_cond_lat, | |
| timestep, | |
| encoder_hidden_states, | |
| *args, | |
| cross_attention_kwargs=dict(mode="w", ref_dict=ref_dict), | |
| **kwargs) | |
| return self.unet(sample, | |
| timestep, | |
| encoder_hidden_states, | |
| *args, | |
| cross_attention_kwargs=dict(mode="r", ref_dict=ref_dict), | |
| **kwargs) | |
| class Hunyuan3d_MVD_Lite_Pipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin, FromSingleFileMixin): | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| tokenizer: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| scheduler: KarrasDiffusionSchedulers, | |
| vision_encoder: CLIPVisionModelWithProjection, | |
| feature_extractor_clip: CLIPImageProcessor, | |
| feature_extractor_vae: CLIPImageProcessor, | |
| ramping_coefficients: Optional[list] = None, | |
| safety_checker=None, | |
| ): | |
| DiffusionPipeline.__init__(self) | |
| self.register_modules( | |
| vae=vae, | |
| unet=unet, | |
| tokenizer=tokenizer, | |
| scheduler=scheduler, | |
| text_encoder=text_encoder, | |
| vision_encoder=vision_encoder, | |
| feature_extractor_vae=feature_extractor_vae, | |
| feature_extractor_clip=feature_extractor_clip) | |
| ''' | |
| rewrite the stable diffusion pipeline | |
| vae: vae | |
| unet: unet | |
| tokenizer: tokenizer | |
| scheduler: scheduler | |
| text_encoder: text_encoder | |
| vision_encoder: vision_encoder | |
| feature_extractor_vae: feature_extractor_vae | |
| feature_extractor_clip: feature_extractor_clip | |
| ''' | |
| self.register_to_config(ramping_coefficients=ramping_coefficients) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| extra_step_kwargs = {} | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_eta: extra_step_kwargs["eta"] = eta | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None): | |
| shape = (batch_size, num_channels_latents, height // self.vae_scale_factor, width // self.vae_scale_factor) | |
| latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = latents * self.scheduler.init_noise_sigma | |
| return latents | |
| def _encode_prompt( | |
| self, | |
| prompt, | |
| device, | |
| num_images_per_prompt, | |
| do_classifier_free_guidance, | |
| negative_prompt=None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| lora_scale: Optional[float] = None, | |
| ): | |
| if lora_scale is not None and isinstance(self, LoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| if prompt_embeds is None: | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, self.tokenizer) | |
| text_inputs = self.tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=self.tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = text_inputs.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)[0] | |
| if self.text_encoder is not None: | |
| prompt_embeds_dtype = self.text_encoder.dtype | |
| elif self.unet is not None: | |
| prompt_embeds_dtype = self.unet.dtype | |
| else: | |
| prompt_embeds_dtype = prompt_embeds.dtype | |
| prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance and negative_prompt_embeds is None: | |
| uncond_tokens: List[str] | |
| if negative_prompt is None: uncond_tokens = [""] * batch_size | |
| elif prompt is not None and type(prompt) is not type(negative_prompt): raise TypeError() | |
| elif isinstance(negative_prompt, str): uncond_tokens = [negative_prompt] | |
| elif batch_size != len(negative_prompt): raise ValueError() | |
| else: uncond_tokens = negative_prompt | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = self.tokenizer(uncond_tokens, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt") | |
| if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask: | |
| attention_mask = uncond_input.attention_mask.to(device) | |
| else: | |
| attention_mask = None | |
| negative_prompt_embeds = self.text_encoder(uncond_input.input_ids.to(device), attention_mask=attention_mask) | |
| negative_prompt_embeds = negative_prompt_embeds[0] | |
| if do_classifier_free_guidance: | |
| seq_len = negative_prompt_embeds.shape[1] | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds]) | |
| return prompt_embeds | |
| def encode_condition_image(self, image: torch.Tensor): return self.vae.encode(image).latent_dist.sample() | |
| def __call__(self, image=None, | |
| width=640, | |
| height=960, | |
| num_inference_steps=75, | |
| return_dict=True, | |
| generator=None, | |
| **kwargs): | |
| batch_size = 1 | |
| num_images_per_prompt = 1 | |
| output_type = 'pil' | |
| do_classifier_free_guidance = True | |
| guidance_rescale = 0. | |
| if isinstance(self.unet, UNet2DConditionModel): | |
| self.unet = RefOnlyNoisedUNet(self.unet, None, self.scheduler).eval() | |
| cond_image = recenter_img(image) | |
| cond_image = to_rgb_image(image) | |
| image = cond_image | |
| image_1 = self.feature_extractor_vae(images=image, return_tensors="pt").pixel_values | |
| image_2 = self.feature_extractor_clip(images=image, return_tensors="pt").pixel_values | |
| image_1 = image_1.to(device=self.vae.device, dtype=self.vae.dtype) | |
| image_2 = image_2.to(device=self.vae.device, dtype=self.vae.dtype) | |
| cond_lat = self.encode_condition_image(image_1) | |
| negative_lat = self.encode_condition_image(torch.zeros_like(image_1)) | |
| cond_lat = torch.cat([negative_lat, cond_lat]) | |
| cross_attention_kwargs = dict(cond_lat=cond_lat) | |
| global_embeds = self.vision_encoder(image_2, output_hidden_states=False).image_embeds.unsqueeze(-2) | |
| encoder_hidden_states = self._encode_prompt('', self.device, num_images_per_prompt, False) | |
| ramp = global_embeds.new_tensor(self.config.ramping_coefficients).unsqueeze(-1) | |
| prompt_embeds = torch.cat([encoder_hidden_states, encoder_hidden_states + global_embeds * ramp]) | |
| device = self._execution_device | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps = self.scheduler.timesteps | |
| num_channels_latents = self.unet.config.in_channels | |
| latents = self.prepare_latents(batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| None) | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, 0.0) | |
| num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order | |
| # set adaptive cfg | |
| # the image order is: | |
| # [0, 60, | |
| # 120, 180, | |
| # 240, 300] | |
| # the cfg is set as 3, 2.5, 2, 1.5 | |
| tmp_guidance_scale = torch.ones_like(latents) | |
| tmp_guidance_scale[:, :, :40, :40] = 3 | |
| tmp_guidance_scale[:, :, :40, 40:] = 2.5 | |
| tmp_guidance_scale[:, :, 40:80, :40] = 2 | |
| tmp_guidance_scale[:, :, 40:80, 40:] = 1.5 | |
| tmp_guidance_scale[:, :, 80:120, :40] = 2 | |
| tmp_guidance_scale[:, :, 80:120, 40:] = 2.5 | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| noise_pred = self.unet(latent_model_input, t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| return_dict=False)[0] | |
| adaptive_guidance_scale = (2 + 16 * (t / 1000) ** 5) / 3 | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + \ | |
| tmp_guidance_scale * adaptive_guidance_scale * \ | |
| (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=guidance_rescale) | |
| latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
| if i==len(timesteps)-1 or ((i+1)>num_warmup_steps and (i+1)%self.scheduler.order==0): | |
| progress_bar.update() | |
| latents = unscale_latents(latents) | |
| image = unscale_image(self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]) | |
| image = self.image_processor.postprocess(image, output_type='pil')[0] | |
| image = [image, cond_image] | |
| return ImagePipelineOutput(images=image) if return_dict else (image,) |