Update app.py
Browse files
app.py
CHANGED
|
@@ -4,12 +4,29 @@ import random
|
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
|
|
|
| 7 |
|
| 8 |
dtype = torch.bfloat16
|
| 9 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
|
| 11 |
pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype).to(device)
|
| 12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|
| 15 |
|
|
@@ -44,8 +61,8 @@ css="""
|
|
| 44 |
with gr.Blocks(css=css) as demo:
|
| 45 |
|
| 46 |
with gr.Column(elem_id="col-container"):
|
| 47 |
-
gr.Markdown(f"""#
|
| 48 |
-
|
| 49 |
""")
|
| 50 |
|
| 51 |
with gr.Row():
|
|
|
|
| 4 |
import spaces
|
| 5 |
import torch
|
| 6 |
from diffusers import DiffusionPipeline
|
| 7 |
+
from huggingface_hub import hf_hub_download
|
| 8 |
|
| 9 |
dtype = torch.bfloat16
|
| 10 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
|
| 12 |
pipe = DiffusionPipeline.from_pretrained("aifeifei798/DarkIdol-flux-v1", torch_dtype=dtype).to(device)
|
| 13 |
|
| 14 |
+
pipe.load_lora_weights(
|
| 15 |
+
hf_hub_download("aifeifei798/feifei-flux-lora-v1", "feifei.safetensors"),
|
| 16 |
+
adapter_name="feifei",
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
pipe.set_adapters(
|
| 20 |
+
["feifei"],
|
| 21 |
+
adapter_weights=[0.65],
|
| 22 |
+
)
|
| 23 |
+
pipe.fuse_lora(
|
| 24 |
+
adapter_name=["feifei"],
|
| 25 |
+
lora_scale=1.0,
|
| 26 |
+
)
|
| 27 |
+
pipe.unload_lora_weights()
|
| 28 |
+
torch.cuda.empty_cache()
|
| 29 |
+
|
| 30 |
MAX_SEED = np.iinfo(np.int32).max
|
| 31 |
MAX_IMAGE_SIZE = 2048
|
| 32 |
|
|
|
|
| 61 |
with gr.Blocks(css=css) as demo:
|
| 62 |
|
| 63 |
with gr.Column(elem_id="col-container"):
|
| 64 |
+
gr.Markdown(f"""# DarkIdol-flux-FeiFei
|
| 65 |
+
DarkIdol-flux-FeiFei is a text-to-image AI model designed to create aesthetic, detailed and diverse images from textual prompts in just 4-8 steps. It offers enhanced performance in image quality, typography, understanding complex prompts, and resource efficiency.
|
| 66 |
""")
|
| 67 |
|
| 68 |
with gr.Row():
|