starfish_data_ai / src /starfish /llm /model_hub /huggingface_adapter.py
John-Jiang's picture
init commit
5301c48
"""HuggingFace service for interacting with the HuggingFace API.
This service focuses on model discovery, search, and downloading from HuggingFace.
"""
import asyncio
import os
import shutil
import tempfile
from typing import Any, Dict, List, Optional, Tuple
import aiohttp
from starfish.common.logger import get_logger
##TODO we will need to move the dependencies of ollma to a seperate file so we can support other model hosting providers like vllm. but for now it is fine
from starfish.llm.backend.ollama_adapter import delete_model as delete_ollama_model
from starfish.llm.backend.ollama_adapter import is_model_available
logger = get_logger(__name__)
HF_API_BASE = "https://huggingface.co/api"
#############################################
# HuggingFace Exception Types
#############################################
class HuggingFaceError(Exception):
"""Base exception for HuggingFace-related errors."""
pass
class HuggingFaceAuthError(HuggingFaceError):
"""Error raised when authentication is required but missing."""
pass
class HuggingFaceModelNotFoundError(HuggingFaceError):
"""Error raised when a model is not found."""
pass
class HuggingFaceAPIError(HuggingFaceError):
"""Error raised for general API errors."""
pass
#############################################
# Core HuggingFace API Functions
#############################################
def get_hf_token() -> Optional[str]:
"""Get HuggingFace API token from environment variable."""
return os.environ.get("HUGGING_FACE_HUB_TOKEN")
async def _make_hf_request(url: str, params: Optional[Dict] = None, check_auth: bool = True) -> Tuple[bool, Any]:
"""Make a request to HuggingFace API with proper error handling.
Args:
url: API URL to request
params: Optional query parameters
check_auth: Whether to include auth token if available
Returns:
Tuple of (success, data/error_message)
"""
headers = {}
if check_auth:
token = get_hf_token()
if token:
headers["Authorization"] = f"Bearer {token}"
try:
async with aiohttp.ClientSession() as session:
async with session.get(url, params=params, headers=headers) as response:
if response.status == 200:
return True, await response.json()
elif response.status in (401, 403):
return False, "Authentication required. Please set the {HUGGING_FACE_HUB_TOKEN} environment variable."
else:
return False, f"Request failed with status {response.status}"
except Exception as e:
return False, f"Request error: {str(e)}"
async def list_hf_models(query: str = "", limit: int = 20) -> List[Dict[str, Any]]:
"""List/search models on HuggingFace.
Args:
query: Optional search query
limit: Maximum number of results
Returns:
List of model info dictionaries
"""
params = {"limit": limit}
if query:
params["search"] = query
success, result = await _make_hf_request(f"{HF_API_BASE}/models", params)
if success:
# Filter to only include models that are likely to work with Ollama
# (supporting language models that might have GGUF variants)
return [
{
"id": model.get("id", ""),
"name": model.get("modelId", model.get("id", "")),
"downloads": model.get("downloads", 0),
"likes": model.get("likes", 0),
"tags": model.get("tags", []),
"requires_auth": "gated" in model.get("tags", []) or model.get("private", False),
}
for model in result
if "text-generation" in model.get("pipeline_tag", "") or any(tag in model.get("tags", []) for tag in ["llm", "gguf", "quantized"])
]
else:
logger.error(f"Failed to list models: {result}")
return []
async def get_imported_hf_models() -> List[str]:
"""Get list of HuggingFace models that have been imported to Ollama.
Returns:
List of model names in Ollama that originated from HuggingFace
"""
from starfish.llm.backend.ollama_adapter import list_models
models = await list_models()
return [model.get("name", "") for model in models if model.get("name", "").startswith("hf-")]
async def check_model_exists(model_id: str) -> bool:
"""Check if a model exists on HuggingFace.
Args:
model_id: HuggingFace model ID (e.g., "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B")
Returns:
bool: True if model exists, False otherwise
"""
success, _ = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}")
return success
async def find_gguf_files(model_id: str) -> List[Dict[str, Any]]:
"""Find GGUF files available for a HuggingFace model.
Args:
model_id: HuggingFace model ID
Returns:
List of file objects containing GGUF files
"""
# First try to check the main branch
success, data = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}/tree/main")
if not success:
# Try checking the master branch as fallback
success, data = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}/tree/master")
if not success:
return []
if not isinstance(data, list):
logger.error(f"Unexpected data format from HuggingFace API: {type(data)}")
return []
# First look for GGUF files
gguf_files = [file for file in data if isinstance(file, dict) and file.get("path", "").lower().endswith(".gguf")]
# If we found GGUF files, return them
if gguf_files:
logger.info(f"Found {len(gguf_files)} GGUF files for model {model_id}")
return gguf_files
# Otherwise, look for GGUF files in subdirectories
for item in data:
if isinstance(item, dict) and item.get("type") == "directory":
dir_path = item.get("path")
if dir_path:
# Common directories where GGUF files are stored
if any(keyword in dir_path.lower() for keyword in ["gguf", "quant", "quantized", "weights", "models"]):
success, subdir_data = await _make_hf_request(f"{HF_API_BASE}/models/{model_id}/tree/main/{dir_path}")
if success and isinstance(subdir_data, list):
subdir_gguf_files = [file for file in subdir_data if isinstance(file, dict) and file.get("path", "").lower().endswith(".gguf")]
if subdir_gguf_files:
logger.info(f"Found {len(subdir_gguf_files)} GGUF files in subdirectory {dir_path}")
gguf_files.extend(subdir_gguf_files)
return gguf_files
async def download_gguf_file(model_id: str, file_path: str, target_path: str) -> bool:
"""Download a GGUF file from HuggingFace.
Args:
model_id: HuggingFace model ID
file_path: Path to the file within the repository
target_path: Local path to save the file
Returns:
bool: True if download was successful, False otherwise
"""
url = f"https://huggingface.co/{model_id}/resolve/main/{file_path}"
try:
logger.info(f"Downloading {url} to {target_path}")
# Ensure directory exists
os.makedirs(os.path.dirname(target_path), exist_ok=True)
headers = {}
token = get_hf_token()
if token:
headers["Authorization"] = f"Bearer {token}"
async with aiohttp.ClientSession() as session:
async with session.get(url, headers=headers) as response:
if response.status != 200:
if response.status in (401, 403):
return False # Auth error handled by caller
logger.error(f"Error downloading GGUF file: {response.status}")
return False
# Download with progress reporting
total_size = int(response.headers.get("Content-Length", 0))
chunk_size = 1024 * 1024 # 1MB chunks
downloaded = 0
# Track last time progress was reported
import time
last_progress_time = 0
last_percentage = -1
# Always log the start
logger.info("Download started: 0.0%")
with open(target_path, "wb") as f:
async for chunk in response.content.iter_chunked(chunk_size):
f.write(chunk)
downloaded += len(chunk)
if total_size:
current_time = time.time()
progress = downloaded / total_size * 100
current_percentage = int(progress)
# Log progress if 5+ seconds have passed or if we've hit a new percentage multiple of 25
if current_time - last_progress_time >= 5 or (current_percentage % 25 == 0 and current_percentage != last_percentage):
logger.info(f"Download progress: {progress:.1f}%")
last_progress_time = current_time
last_percentage = current_percentage
# Always log the completion
logger.info(f"Download completed: {target_path}")
return True
except Exception as e:
logger.error(f"Error downloading GGUF file: {e}")
return False
async def import_model_to_ollama(local_file_path: str, model_name: str) -> bool:
"""Import a GGUF file into Ollama.
Args:
local_file_path: Path to the downloaded GGUF file
model_name: Name to give the model in Ollama
Returns:
bool: True if import was successful, False otherwise
"""
try:
# Ensure Ollama bin exists
ollama_bin = shutil.which("ollama")
if not ollama_bin:
logger.error("Ollama binary not found")
return False
# Create a temporary Modelfile
with tempfile.NamedTemporaryFile(mode="w", suffix=".txt", delete=False) as f:
modelfile_path = f.name
f.write(f"FROM {os.path.abspath(local_file_path)}\n")
f.write('TEMPLATE "{.System}\\n\\n{.Prompt}"')
logger.info(f"Created temporary Modelfile at {modelfile_path}")
# Import the model using Ollama
logger.info(f"Importing model into Ollama as {model_name}")
process = await asyncio.create_subprocess_exec(
ollama_bin, "create", model_name, "-f", modelfile_path, stdout=asyncio.subprocess.PIPE, stderr=asyncio.subprocess.PIPE
)
# Capture output
stdout, stderr = await process.communicate()
# Clean up temporary file
os.unlink(modelfile_path)
if process.returncode == 0:
logger.info(f"Successfully imported model as {model_name}")
return True
else:
logger.error(f"Failed to import model: {stderr.decode()}")
return False
except Exception as e:
logger.error(f"Error importing model to Ollama: {e}")
return False
async def get_best_gguf_file(gguf_files: List[Dict[str, Any]]) -> Optional[Dict[str, Any]]:
"""Select the best GGUF file from a list of files.
Prioritizes:
1. Smaller quantization (q4_K > q5_K > q8_0)
2. File size (prefers smaller files for same quantization level)
3. Avoid huge files unless necessary.
Args:
gguf_files: List of GGUF file objects
Returns:
The best GGUF file object or None if list is empty
"""
if not gguf_files:
return None
# Quantization priority (lower is better for typical use cases)
# Prioritize middle-range quantization for balance of quality and size
quant_priority = {
"q4_k": 1, # Best balance for most use cases
"q5_k": 2, # Good balance of quality and size
"q4_0": 3, # Good for typical use
"q4_1": 4, # Good for typical use
"q3_k": 5, # More compression, less quality
"q5_0": 6,
"q5_1": 7,
"q6_k": 8,
"q2_k": 9, # Lowest quality but smallest
"q8_0": 10, # High quality but larger
"f16": 20, # Full precision, very large
"f32": 30, # Full precision, extremely large
}
# Add a size penalty for very large files
MAX_PREFERRED_SIZE = 4 * 1024 * 1024 * 1024 # 4GB
# Extract quantization information
for file in gguf_files:
path = file.get("path", "").lower()
size = file.get("size", 0)
# Determine quantization level
quant_score = 100 # Default high value
for quant, priority in quant_priority.items():
if quant in path:
quant_score = priority
break
# Store the score and size in the file object for sorting
file["_quant_score"] = quant_score
file["_size"] = size
# First try to find models under the preferred size with good quantization
preferred_files = [f for f in gguf_files if f.get("_size", 0) <= MAX_PREFERRED_SIZE]
if preferred_files:
# Sort by quantization score (lower is better)
sorted_files = sorted(preferred_files, key=lambda x: x.get("_quant_score", 100))
else:
# If all files are large, sort by quantization score
sorted_files = sorted(gguf_files, key=lambda x: x.get("_quant_score", 100))
if sorted_files:
selected = sorted_files[0]
size_mb = selected.get("_size", 0) / (1024 * 1024)
logger.info(f"Selected GGUF file: {selected.get('path')} ({size_mb:.1f} MB)")
return selected
return None
async def download_best_gguf_for_model(model_id: str) -> Tuple[bool, str, Optional[str]]:
"""Download the best GGUF file for a HuggingFace model.
This is a pure HuggingFace operation that doesn't directly depend on Ollama.
Args:
model_id: HuggingFace model ID
Returns:
Tuple of (success, message, local_file_path)
Where local_file_path is the path to the downloaded file if successful, None otherwise
Raises:
HuggingFaceModelNotFoundError: If the model doesn't exist on HuggingFace
HuggingFaceAuthError: If authentication is required but not provided
HuggingFaceError: For other HuggingFace-related errors
"""
# Check if model exists
if not await check_model_exists(model_id):
error_msg = f"Model {model_id} not found on HuggingFace"
logger.error(error_msg)
raise HuggingFaceModelNotFoundError(error_msg)
# Find GGUF files
gguf_files = await find_gguf_files(model_id)
if not gguf_files:
error_msg = f"No GGUF files found for model {model_id}"
logger.error(error_msg)
raise HuggingFaceError(error_msg)
# Select best GGUF file
best_file = await get_best_gguf_file(gguf_files)
if not best_file:
error_msg = f"Could not select a suitable GGUF file for model {model_id}"
logger.error(error_msg)
raise HuggingFaceError(error_msg)
# Create a temporary directory for download
temp_dir = tempfile.mkdtemp()
try:
file_path = best_file.get("path")
file_name = os.path.basename(file_path)
local_file_path = os.path.join(temp_dir, file_name)
# Download the GGUF file
if not await download_gguf_file(model_id, file_path, local_file_path):
# Check if it's an auth error
token = get_hf_token()
if not token:
error_msg = f"Authentication required for model {model_id}. Please set the HUGGING_FACE_HUB_TOKEN environment variable."
logger.error(error_msg)
raise HuggingFaceAuthError(error_msg)
else:
error_msg = f"Failed to download GGUF file for model {model_id}"
logger.error(error_msg)
raise HuggingFaceError(error_msg)
logger.info(f"Successfully downloaded GGUF file to {local_file_path}")
return True, f"Successfully downloaded model {model_id}", local_file_path
except Exception as e:
# Clean up temp directory in case of error
shutil.rmtree(temp_dir, ignore_errors=True)
# Re-raise HuggingFace exceptions directly
if isinstance(e, (HuggingFaceModelNotFoundError, HuggingFaceAuthError, HuggingFaceError)):
raise
# For other exceptions, wrap in HuggingFaceError
logger.exception(f"Unexpected error downloading model {model_id}")
raise HuggingFaceError(f"Unexpected error: {str(e)}")
async def prepare_hf_model_for_ollama(model_id: str) -> Tuple[bool, str]:
"""Prepare a HuggingFace model for use with Ollama.
This function bridges HuggingFace and Ollama services.
Args:
model_id: HuggingFace model ID
Returns:
Tuple of (success, message_or_ollama_name)
Raises:
HuggingFaceModelNotFoundError: If the model doesn't exist on HuggingFace
HuggingFaceAuthError: If authentication is required but not provided
HuggingFaceError: For other HuggingFace-related errors
"""
# Create a sanitized model name for Ollama
ollama_name = f"hf-{model_id.replace('/', '-').lower()}"
try:
# Check if model is already imported in Ollama
if await is_model_available(ollama_name):
logger.info(f"Model {ollama_name} is already available in Ollama")
return True, ollama_name
# Download the best GGUF file
success, message, local_file_path = await download_best_gguf_for_model(model_id)
if not success or not local_file_path:
# Re-raise the specific error based on the message
if "not found" in message.lower():
raise HuggingFaceModelNotFoundError(message)
elif "authentication" in message.lower():
raise HuggingFaceAuthError(message)
else:
raise HuggingFaceError(message)
try:
# Import to Ollama
if not await import_model_to_ollama(local_file_path, ollama_name):
raise HuggingFaceError(f"Failed to import model {model_id} to Ollama")
logger.info(f"Successfully prepared HuggingFace model {model_id} as Ollama model {ollama_name}")
return True, ollama_name
finally:
# Clean up the temp directory containing the downloaded file
temp_dir = os.path.dirname(local_file_path)
shutil.rmtree(temp_dir, ignore_errors=True)
except (HuggingFaceModelNotFoundError, HuggingFaceAuthError, HuggingFaceError):
# Let specific exceptions propagate up
raise
except Exception as e:
logger.exception(f"Error preparing model {model_id} for Ollama")
raise HuggingFaceError(f"Error preparing model: {str(e)}")
async def ensure_hf_model_ready(model_id: str) -> Tuple[bool, str]:
"""Ensure a HuggingFace model is ready for use with Ollama.
This function bridges HuggingFace and Ollama services.
Args:
model_id: HuggingFace model ID
Returns:
Tuple of (success, ollama_model_name)
Raises:
HuggingFaceModelNotFoundError: If the model doesn't exist on HuggingFace
HuggingFaceAuthError: If authentication is required but not provided
HuggingFaceError: For other HuggingFace-related errors
"""
from starfish.llm.backend.ollama_adapter import (
OllamaConnectionError,
ensure_model_ready,
)
# First ensure Ollama is running
try:
if not await ensure_model_ready(""): # Just make sure Ollama is running
raise HuggingFaceError("Failed to start Ollama server")
# Prepare the HuggingFace model for Ollama
return await prepare_hf_model_for_ollama(model_id)
except OllamaConnectionError as e:
# Convert Ollama errors to HuggingFace errors for consistent error handling
logger.error(f"Ollama connection error: {e}")
raise HuggingFaceError(f"Ollama server error: {str(e)}")
async def delete_hf_model(model_id: str) -> bool:
"""Delete a HuggingFace model from Ollama.
This function bridges HuggingFace and Ollama services.
Args:
model_id: Either the HuggingFace model ID or the Ollama model name
Returns:
bool: True if deletion was successful
"""
# If this looks like a HF model ID, convert to Ollama name format
if "/" in model_id and not model_id.startswith("hf-"):
ollama_name = f"hf-{model_id.replace('/', '-').lower()}"
else:
ollama_name = model_id
return await delete_ollama_model(ollama_name)