MASA_GroundingDINO / configs /masa-gdino /masa_gdino_swinb_inference.py
JohanDL's picture
initial commit
f1dd031
raw
history blame
6.98 kB
_base_ = [
'../../projects/grounding_dino/grounding_dino_swin-b_pretrain_mixeddata_masa.py',
'../default_runtime.py'
]
default_scope = 'mmdet'
detector = _base_.model
detector.pop('data_preprocessor')
detector['init_cfg'] = dict(
type='Pretrained',
checkpoint= 'saved_models/tsa_models/groundingdino_swinb_cogcoor_mmdet-55949c9c.pth'
# noqa: E501
)
detector['type'] = 'GroundingDINOMasa'
del _base_.model
model = dict(
type='MASA',
freeze_detector=True,
unified_backbone=True,
load_public_dets = False,
data_preprocessor=dict(
type='TrackDataPreprocessor',
# Image normalization parameters
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
# Image padding parameters
pad_mask=False, # In instance segmentation, the mask needs to be padded
pad_size_divisor=32), # Padding the image to multiples of 32
detector=detector,
masa_adapter=[
dict(
type='FPN',
in_channels=[256, 512, 1024],
out_channels=256,
norm_cfg=dict(type='SyncBN', requires_grad=True),
num_outs=5),
dict(
type='DeformFusion',
in_channels=256,
out_channels=256,
num_blocks=3)],
rpn_head=dict(
type='RPNHead',
in_channels=256,
feat_channels=256,
anchor_generator=dict(
type='AnchorGenerator',
scales=[8],
ratios=[0.5, 1.0, 2.0],
strides=[8, 16, 32, 64, 128]),
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[.0, .0, .0, .0],
target_stds=[1.0, 1.0, 1.0, 1.0]),
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0),
loss_bbox=dict(type='SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0)
),
roi_head=dict(
type='StandardRoIHead',
bbox_roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[8, 16, 32]),
bbox_head=dict(
type='Shared2FCBBoxHead',
in_channels=256,
fc_out_channels=1024,
roi_feat_size=7,
num_classes=1,
bbox_coder=dict(
type='DeltaXYWHBBoxCoder',
target_means=[0., 0., 0., 0.],
target_stds=[0.1, 0.1, 0.2, 0.2]),
reg_class_agnostic=True,
loss_cls=dict(
type='CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_bbox=dict(type='L1Loss', loss_weight=1.0))),
# model training and testing settings
train_cfg=dict(
rpn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.3,
match_low_quality=True,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=256,
pos_fraction=0.5,
neg_pos_ub=-1,
add_gt_as_proposals=False),
allowed_border=-1,
pos_weight=-1,
debug=False),
rpn_proposal=dict(
nms_pre=2000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.5,
neg_iou_thr=0.5,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='RandomSampler',
num=512,
pos_fraction=0.25,
neg_pos_ub=-1,
add_gt_as_proposals=True),
pos_weight=-1,
debug=False)),
test_cfg=dict(
rpn=dict(
nms_pre=1000,
max_per_img=1000,
nms=dict(type='nms', iou_threshold=0.7),
min_bbox_size=0),
rcnn=dict(
score_thr=0.02,
# nms=dict(type='nms', iou_threshold=0.5),
nms=dict(type='nms',
iou_threshold=0.5,
class_agnostic=True,
split_thr=100000),
max_per_img=50,
mask_thr_binary=0.5)
# soft-nms is also supported for rcnn testing
# e.g., nms=dict(type='soft_nms', iou_threshold=0.5, min_score=0.05)
),
track_head=dict(
type='MasaTrackHead',
roi_extractor=dict(
type='SingleRoIExtractor',
roi_layer=dict(type='RoIAlign', output_size=7, sampling_ratio=0),
out_channels=256,
featmap_strides=[8, 16, 32]),
embed_head=dict(
type='QuasiDenseEmbedHead',
num_convs=4,
num_fcs=1,
embed_channels=256,
norm_cfg=dict(type='GN', num_groups=32),
loss_track=dict(type='UnbiasedContrastLoss', loss_weight=0.25),
loss_track_aux=dict(
type='MarginL2Loss',
neg_pos_ub=3,
pos_margin=0,
neg_margin=0.1,
hard_mining=True,
loss_weight=1.0)),
train_cfg=dict(
assigner=dict(
type='MaxIoUAssigner',
pos_iou_thr=0.7,
neg_iou_thr=0.3,
min_pos_iou=0.5,
match_low_quality=False,
ignore_iof_thr=-1),
sampler=dict(
type='CombinedSampler',
num=512,
pos_fraction=0.5,
neg_pos_ub=3,
add_gt_as_proposals=True,
pos_sampler=dict(type='InstanceBalancedPosSampler'),
neg_sampler=dict(type='RandomSampler')))),
tracker=dict(
type='MasaTaoTracker',
init_score_thr=0.1,
obj_score_thr=0.01,
match_score_thr=0.5,
memo_tracklet_frames=10,
memo_momentum=0.8,
with_cats=False,
max_distance=100,
fps=30,
)
)
inference_pipeline = [
dict(
type='TransformBroadcaster',
transforms=[
dict(
type='Resize',
scale=(1333, 800),
keep_ratio=True),
]),
dict(type='PackTrackInputs')
]
# runtime settings
train_cfg = None
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
default_hooks = dict(
logger=dict(type='LoggerHook', interval=50),
visualization=dict(type='TrackVisualizationHook', draw=False),
checkpoint = dict(type='CheckpointHook', interval=1),
)
vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
type='MasaTrackLocalVisualizer', vis_backends=vis_backends, name='visualizer')