Spaces:
Runtime error
Runtime error
# data pipeline | |
test_pipeline = [ | |
dict( | |
type='TransformBroadcaster', | |
transforms=[ | |
dict(type='LoadImageFromFile'), | |
dict(type='Resize', scale=(1333, 800), keep_ratio=True), | |
dict(type='LoadTrackAnnotations') | |
]), | |
dict(type='PackTrackInputs') | |
] | |
# dataloader | |
test_dataset_tpye = 'Taov05Dataset' | |
val_dataloader = dict( | |
batch_size=1, | |
num_workers=2, | |
persistent_workers=True, | |
# Now we support two ways to test, image_based and video_based | |
# if you want to use video_based sampling, you can use as follows | |
sampler=dict(type='TrackImgSampler'), # image-based sampling | |
dataset=dict( | |
type=test_dataset_tpye, | |
ann_file='data/tao/annotations/tao_val_lvis_v05_classes.json', | |
data_prefix=dict(img_path='data/tao/frames/'), | |
test_mode=True, | |
pipeline=test_pipeline | |
)) | |
test_dataloader = val_dataloader | |
# evaluator | |
val_evaluator = dict( | |
type='TaoTETAMetric', | |
dataset_type=test_dataset_tpye, | |
format_only=False, | |
ann_file='data/tao/annotations/tao_val_lvis_v05_classes.json', | |
metric=['TETA']) | |
test_evaluator = val_evaluator | |