JohanDL's picture
adding checkpoints
bbd0fe5
raw
history blame
3.06 kB
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the license found in the
# LICENSE file in the root directory of this source tree.
from typing import Sequence
import torch
from torchvision import transforms
class GaussianBlur(transforms.RandomApply):
"""
Apply Gaussian Blur to the PIL image.
"""
def __init__(self, *, p: float = 0.5, radius_min: float = 0.1, radius_max: float = 2.0):
# NOTE: torchvision is applying 1 - probability to return the original image
keep_p = 1 - p
transform = transforms.GaussianBlur(kernel_size=9, sigma=(radius_min, radius_max))
super().__init__(transforms=[transform], p=keep_p)
class MaybeToTensor(transforms.ToTensor):
"""
Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor, or keep as is if already a tensor.
"""
def __call__(self, pic):
"""
Args:
pic (PIL Image, numpy.ndarray or torch.tensor): Image to be converted to tensor.
Returns:
Tensor: Converted image.
"""
if isinstance(pic, torch.Tensor):
return pic
return super().__call__(pic)
# Use timm's names
IMAGENET_DEFAULT_MEAN = (0.485, 0.456, 0.406)
IMAGENET_DEFAULT_STD = (0.229, 0.224, 0.225)
def make_normalize_transform(
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
) -> transforms.Normalize:
return transforms.Normalize(mean=mean, std=std)
# This roughly matches torchvision's preset for classification training:
# https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L6-L44
def make_classification_train_transform(
*,
crop_size: int = 224,
interpolation=transforms.InterpolationMode.BICUBIC,
hflip_prob: float = 0.5,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
):
transforms_list = [transforms.RandomResizedCrop(crop_size, interpolation=interpolation)]
if hflip_prob > 0.0:
transforms_list.append(transforms.RandomHorizontalFlip(hflip_prob))
transforms_list.extend(
[
MaybeToTensor(),
make_normalize_transform(mean=mean, std=std),
]
)
return transforms.Compose(transforms_list)
# This matches (roughly) torchvision's preset for classification evaluation:
# https://github.com/pytorch/vision/blob/main/references/classification/presets.py#L47-L69
def make_classification_eval_transform(
*,
resize_size: int = 256,
interpolation=transforms.InterpolationMode.BICUBIC,
crop_size: int = 224,
mean: Sequence[float] = IMAGENET_DEFAULT_MEAN,
std: Sequence[float] = IMAGENET_DEFAULT_STD,
) -> transforms.Compose:
transforms_list = [
transforms.Resize(resize_size, interpolation=interpolation),
transforms.CenterCrop(crop_size),
MaybeToTensor(),
make_normalize_transform(mean=mean, std=std),
]
return transforms.Compose(transforms_list)