Spaces:
Running
on
Zero
Running
on
Zero
import torch.nn as nn | |
def _make_scratch(in_shape, out_shape, groups=1, expand=False): | |
scratch = nn.Module() | |
out_shape1 = out_shape | |
out_shape2 = out_shape | |
out_shape3 = out_shape | |
if len(in_shape) >= 4: | |
out_shape4 = out_shape | |
if expand: | |
out_shape1 = out_shape | |
out_shape2 = out_shape*2 | |
out_shape3 = out_shape*4 | |
if len(in_shape) >= 4: | |
out_shape4 = out_shape*8 | |
scratch.layer1_rn = nn.Conv2d( | |
in_shape[0], out_shape1, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer2_rn = nn.Conv2d( | |
in_shape[1], out_shape2, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
scratch.layer3_rn = nn.Conv2d( | |
in_shape[2], out_shape3, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
if len(in_shape) >= 4: | |
scratch.layer4_rn = nn.Conv2d( | |
in_shape[3], out_shape4, kernel_size=3, stride=1, padding=1, bias=False, groups=groups | |
) | |
return scratch | |
class ResidualConvUnit(nn.Module): | |
"""Residual convolution module. | |
""" | |
def __init__(self, features, activation, bn): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super().__init__() | |
self.bn = bn | |
self.groups=1 | |
self.conv1 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups | |
) | |
self.conv2 = nn.Conv2d( | |
features, features, kernel_size=3, stride=1, padding=1, bias=True, groups=self.groups | |
) | |
if self.bn==True: | |
self.bn1 = nn.BatchNorm2d(features) | |
self.bn2 = nn.BatchNorm2d(features) | |
self.activation = activation | |
self.skip_add = nn.quantized.FloatFunctional() | |
def forward(self, x): | |
"""Forward pass. | |
Args: | |
x (tensor): input | |
Returns: | |
tensor: output | |
""" | |
out = self.activation(x) | |
out = self.conv1(out) | |
if self.bn==True: | |
out = self.bn1(out) | |
out = self.activation(out) | |
out = self.conv2(out) | |
if self.bn==True: | |
out = self.bn2(out) | |
if self.groups > 1: | |
out = self.conv_merge(out) | |
return self.skip_add.add(out, x) | |
class FeatureFusionBlock(nn.Module): | |
"""Feature fusion block. | |
""" | |
def __init__(self, features, activation, deconv=False, bn=False, expand=False, align_corners=True, size=None): | |
"""Init. | |
Args: | |
features (int): number of features | |
""" | |
super(FeatureFusionBlock, self).__init__() | |
self.deconv = deconv | |
self.align_corners = align_corners | |
self.groups=1 | |
self.expand = expand | |
out_features = features | |
if self.expand==True: | |
out_features = features//2 | |
self.out_conv = nn.Conv2d(features, out_features, kernel_size=1, stride=1, padding=0, bias=True, groups=1) | |
self.resConfUnit1 = ResidualConvUnit(features, activation, bn) | |
self.resConfUnit2 = ResidualConvUnit(features, activation, bn) | |
self.skip_add = nn.quantized.FloatFunctional() | |
self.size=size | |
def forward(self, *xs, size=None): | |
"""Forward pass. | |
Returns: | |
tensor: output | |
""" | |
output = xs[0] | |
if len(xs) == 2: | |
res = self.resConfUnit1(xs[1]) | |
output = self.skip_add.add(output, res) | |
output = self.resConfUnit2(output) | |
if (size is None) and (self.size is None): | |
modifier = {"scale_factor": 2} | |
elif size is None: | |
modifier = {"size": self.size} | |
else: | |
modifier = {"size": size} | |
output = nn.functional.interpolate( | |
output, **modifier, mode="bilinear", align_corners=self.align_corners | |
) | |
output = self.out_conv(output) | |
return output | |