Spaces:
Running
on
Zero
Running
on
Zero
| # Copyright (c) Meta Platforms, Inc. and affiliates. | |
| # All rights reserved. | |
| # | |
| # This source code is licensed under the license found in the | |
| # LICENSE file in the root directory of this source tree. | |
| import logging | |
| from typing import Dict, Optional | |
| import torch | |
| from torch import nn | |
| from torchmetrics import MetricCollection | |
| from dinov2.data import DatasetWithEnumeratedTargets, SamplerType, make_data_loader | |
| import dinov2.distributed as distributed | |
| from dinov2.logging import MetricLogger | |
| logger = logging.getLogger("dinov2") | |
| class ModelWithNormalize(torch.nn.Module): | |
| def __init__(self, model): | |
| super().__init__() | |
| self.model = model | |
| def forward(self, samples): | |
| return nn.functional.normalize(self.model(samples), dim=1, p=2) | |
| class ModelWithIntermediateLayers(nn.Module): | |
| def __init__(self, feature_model, n_last_blocks, autocast_ctx): | |
| super().__init__() | |
| self.feature_model = feature_model | |
| self.feature_model.eval() | |
| self.n_last_blocks = n_last_blocks | |
| self.autocast_ctx = autocast_ctx | |
| def forward(self, images): | |
| with torch.inference_mode(): | |
| with self.autocast_ctx(): | |
| features = self.feature_model.get_intermediate_layers( | |
| images, self.n_last_blocks, return_class_token=True | |
| ) | |
| return features | |
| def evaluate( | |
| model: nn.Module, | |
| data_loader, | |
| postprocessors: Dict[str, nn.Module], | |
| metrics: Dict[str, MetricCollection], | |
| device: torch.device, | |
| criterion: Optional[nn.Module] = None, | |
| ): | |
| model.eval() | |
| if criterion is not None: | |
| criterion.eval() | |
| for metric in metrics.values(): | |
| metric = metric.to(device) | |
| metric_logger = MetricLogger(delimiter=" ") | |
| header = "Test:" | |
| for samples, targets, *_ in metric_logger.log_every(data_loader, 10, header): | |
| outputs = model(samples.to(device)) | |
| targets = targets.to(device) | |
| if criterion is not None: | |
| loss = criterion(outputs, targets) | |
| metric_logger.update(loss=loss.item()) | |
| for k, metric in metrics.items(): | |
| metric_inputs = postprocessors[k](outputs, targets) | |
| metric.update(**metric_inputs) | |
| metric_logger.synchronize_between_processes() | |
| logger.info(f"Averaged stats: {metric_logger}") | |
| stats = {k: metric.compute() for k, metric in metrics.items()} | |
| metric_logger_stats = {k: meter.global_avg for k, meter in metric_logger.meters.items()} | |
| return metric_logger_stats, stats | |
| def all_gather_and_flatten(tensor_rank): | |
| tensor_all_ranks = torch.empty( | |
| distributed.get_global_size(), | |
| *tensor_rank.shape, | |
| dtype=tensor_rank.dtype, | |
| device=tensor_rank.device, | |
| ) | |
| tensor_list = list(tensor_all_ranks.unbind(0)) | |
| torch.distributed.all_gather(tensor_list, tensor_rank.contiguous()) | |
| return tensor_all_ranks.flatten(end_dim=1) | |
| def extract_features(model, dataset, batch_size, num_workers, gather_on_cpu=False): | |
| dataset_with_enumerated_targets = DatasetWithEnumeratedTargets(dataset) | |
| sample_count = len(dataset_with_enumerated_targets) | |
| data_loader = make_data_loader( | |
| dataset=dataset_with_enumerated_targets, | |
| batch_size=batch_size, | |
| num_workers=num_workers, | |
| sampler_type=SamplerType.DISTRIBUTED, | |
| drop_last=False, | |
| shuffle=False, | |
| ) | |
| return extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu) | |
| def extract_features_with_dataloader(model, data_loader, sample_count, gather_on_cpu=False): | |
| gather_device = torch.device("cpu") if gather_on_cpu else torch.device("cuda") | |
| metric_logger = MetricLogger(delimiter=" ") | |
| features, all_labels = None, None | |
| for samples, (index, labels_rank) in metric_logger.log_every(data_loader, 10): | |
| samples = samples.cuda(non_blocking=True) | |
| labels_rank = labels_rank.cuda(non_blocking=True) | |
| index = index.cuda(non_blocking=True) | |
| features_rank = model(samples).float() | |
| # init storage feature matrix | |
| if features is None: | |
| features = torch.zeros(sample_count, features_rank.shape[-1], device=gather_device) | |
| labels_shape = list(labels_rank.shape) | |
| labels_shape[0] = sample_count | |
| all_labels = torch.full(labels_shape, fill_value=-1, device=gather_device) | |
| logger.info(f"Storing features into tensor of shape {features.shape}") | |
| # share indexes, features and labels between processes | |
| index_all = all_gather_and_flatten(index).to(gather_device) | |
| features_all_ranks = all_gather_and_flatten(features_rank).to(gather_device) | |
| labels_all_ranks = all_gather_and_flatten(labels_rank).to(gather_device) | |
| # update storage feature matrix | |
| if len(index_all) > 0: | |
| features.index_copy_(0, index_all, features_all_ranks) | |
| all_labels.index_copy_(0, index_all, labels_all_ranks) | |
| logger.info(f"Features shape: {tuple(features.shape)}") | |
| logger.info(f"Labels shape: {tuple(all_labels.shape)}") | |
| assert torch.all(all_labels > -1) | |
| return features, all_labels | |