Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| import torch | |
| import numpy as np | |
| import modin.pandas as pd | |
| from PIL import Image | |
| from diffusers import DiffusionPipeline | |
| from huggingface_hub import login | |
| import streamlit as st | |
| from streamlit import secrets | |
| token=st.secrets(['HF_KEY']) | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| pipe = DiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-0.9") | |
| pipe = pipe.to(device) | |
| pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True) | |
| def genie (prompt, negative_prompt, scale, steps, seed): | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| images = pipe(prompt, negative_prompt=negative_prompt, width=768, height=768, num_inference_steps=steps, guidance_scale=scale, num_images_per_prompt=1, generator=generator).images[0] | |
| return images | |
| gr.Interface(fn=genie, inputs=[gr.Textbox(label='What you want the AI to generate. 77 Token Limit.'), gr.Textbox(label='What you Do Not want the AI to generate.'), gr.Slider(1, 25, 10), gr.Slider(1, maximum=50, value=25, step=1), gr.Slider(minimum=1, step=1, maximum=999999999999999999, randomize=True)], outputs='image', title="Stable Diffusion 2.1 CPU", description="SD 2.1 CPU. <b>WARNING:</b> Extremely Slow. 130s/Iteration. Expect 14-28mins an image for 10-20 iterations respectively.", article = "Code Monkey: <a href=\"https://huggingface.co/Manjushri\">Manjushri</a>").launch(debug=True, max_threads=True) |