Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import pipeline | |
import torch | |
import numpy as np | |
from monitoring import PerformanceMonitor, measure_time | |
# Model IDs | |
MODEL_OPTIONS = { | |
"Base Model": "HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
"Fine-tuned Model": "Joash2024/Math-SmolLM2-1.7B" | |
} | |
# Initialize performance monitor | |
monitor = PerformanceMonitor() | |
def format_prompt(problem): | |
"""Format the input problem according to the model's expected format""" | |
return f"Given a mathematical function, find its derivative.\n\nFunction: {problem}\nThe derivative of this function is:" | |
def get_model_response(problem, model_id): | |
"""Get response from a specific model""" | |
try: | |
# Initialize pipeline for each request | |
pipe = pipeline( | |
"text-generation", | |
model=model_id, | |
torch_dtype=torch.float16, | |
device_map="auto", | |
model_kwargs={"low_cpu_mem_usage": True} | |
) | |
# Format prompt and generate response | |
prompt = format_prompt(problem) | |
response = pipe( | |
prompt, | |
max_new_tokens=50, # Shorter response | |
temperature=0.1, | |
do_sample=False, # Deterministic | |
num_return_sequences=1, | |
return_full_text=False # Only return new text | |
)[0]["generated_text"] | |
return response.strip() | |
except Exception as e: | |
return f"Error: {str(e)}" | |
def solve_problem(problem, problem_type, model_type): | |
"""Solve a math problem using the selected model""" | |
if not problem: | |
return "Please enter a problem", None | |
# Record problem type | |
monitor.record_problem_type(problem_type) | |
# Add problem type context if provided | |
if problem_type != "Custom": | |
problem = f"{problem_type}: {problem}" | |
# Get response from selected model | |
model_id = MODEL_OPTIONS[model_type] | |
response, time_taken = get_model_response(problem, model_id) | |
# Format response with steps | |
output = f"""Solution: {response} | |
Let's verify this step by step: | |
1. Starting with f(x) = {problem} | |
2. Applying differentiation rules | |
3. We get f'(x) = {response}""" | |
# Record metrics | |
monitor.record_response_time(model_type, time_taken) | |
monitor.record_success(model_type, not response.startswith("Error")) | |
# Get updated statistics | |
stats = monitor.get_statistics() | |
# Format statistics for display | |
stats_display = f""" | |
### Performance Metrics | |
#### Response Times (seconds) | |
- {model_type}: {stats.get(f'{model_type}_avg_response_time', 0):.2f} avg | |
#### Success Rates | |
- {model_type}: {stats.get(f'{model_type}_success_rate', 0):.1f}% | |
#### Problem Types Used | |
""" | |
for ptype, percentage in stats.get('problem_type_distribution', {}).items(): | |
stats_display += f"- {ptype}: {percentage:.1f}%\n" | |
return output, stats_display | |
# Create Gradio interface | |
with gr.Blocks(title="Mathematics Problem Solver") as demo: | |
gr.Markdown("# Mathematics Problem Solver") | |
gr.Markdown("Test our models on mathematical problems") | |
with gr.Row(): | |
with gr.Column(): | |
problem_type = gr.Dropdown( | |
choices=["Addition", "Root Finding", "Derivative", "Custom"], | |
value="Derivative", | |
label="Problem Type" | |
) | |
model_type = gr.Dropdown( | |
choices=list(MODEL_OPTIONS.keys()), | |
value="Fine-tuned Model", | |
label="Model to Use" | |
) | |
problem_input = gr.Textbox( | |
label="Enter your math problem", | |
placeholder="Example: x^2 + 3x" | |
) | |
solve_btn = gr.Button("Solve", variant="primary") | |
with gr.Row(): | |
solution_output = gr.Textbox(label="Solution", lines=5) | |
# Performance metrics display | |
with gr.Row(): | |
metrics_display = gr.Markdown("### Performance Metrics\n*Solve a problem to see metrics*") | |
# Example problems | |
gr.Examples( | |
examples=[ | |
["x^2 + 3x", "Derivative", "Fine-tuned Model"], | |
["144", "Root Finding", "Fine-tuned Model"], | |
["235 + 567", "Addition", "Fine-tuned Model"], | |
["\\sin{\\left(x\\right)}", "Derivative", "Fine-tuned Model"], | |
["e^x", "Derivative", "Fine-tuned Model"], | |
["\\frac{1}{x}", "Derivative", "Fine-tuned Model"], | |
["x^3 + 2x", "Derivative", "Fine-tuned Model"], | |
["\\cos{\\left(x^2\\right)}", "Derivative", "Fine-tuned Model"] | |
], | |
inputs=[problem_input, problem_type, model_type], | |
outputs=[solution_output, metrics_display], | |
fn=solve_problem, | |
cache_examples=True, | |
) | |
# Connect the interface | |
solve_btn.click( | |
fn=solve_problem, | |
inputs=[problem_input, problem_type, model_type], | |
outputs=[solution_output, metrics_display] | |
) | |
if __name__ == "__main__": | |
demo.launch() | |