Spaces:
Running
Running
import torch | |
import gradio as gr | |
from diffusers import UniDiffuserPipeline | |
from diffusers.utils import load_image | |
from accelerate import Accelerator | |
accelerator = Accelerator(cpu=True) | |
pipe = accelerator.prepare(UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.bfloat16)) | |
pipe = pipe.to("cpu") | |
apol=[] | |
def plex(image_url,stips): | |
init_image = load_image(image_url).resize((512, 512)) | |
sample = pipe(image=init_image, num_inference_steps=stips, guidance_scale=8.0) | |
i2t_text = sample.text[0] | |
sample = pipe(prompt=i2t_text, num_inference_steps=stips, guidance_scale=8.0) | |
for i, imge in enumerate(sample["images"]): | |
apol.append(imge) | |
return apol | |
iface = gr.Interface(fn=plex, inputs=[gr.Image(label="img",type="filepath"), gr.Slider(label="num inference steps", minimum=1, step=1, maximum=5, value=5)], outputs=gr.Gallery(label="out", columns=2)) | |
iface.queue(max_size=1,api_open=False) | |
iface.launch(max_threads=1) |