JoPmt's picture
Update app.py
4c6b997 verified
raw
history blame
5.06 kB
from diffusers import StableDiffusionLDM3DPipeline, DDIMScheduler
import torch
from transformers import pipeline
import gradio as gr
from PIL import Image
from diffusers.utils import load_image
import os, random, gc, re, json, time, shutil, glob
import PIL.Image
import tqdm
from accelerate import Accelerator
from huggingface_hub import HfApi, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem
HfApi=HfApi()
HF_TOKEN=os.getenv("HF_TOKEN")
HF_HUB_DISABLE_TELEMETRY=1
DO_NOT_TRACK=1
HF_HUB_ENABLE_HF_TRANSFER=0
accelerator = Accelerator(cpu=True)
InferenceClient=InferenceClient()
apol=[]
pipe = accelerator.prepare(StableDiffusionLDM3DPipeline.from_pretrained("Intel/ldm3d-pano", torch_dtype=torch.bfloat16, variant=None, use_safetensors=False, safety_checker=None))
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config)
pipe.unet.to(memory_format=torch.channels_last)
pipe.to("cpu")
def chdr(apol,prompt,modil,stips,fnamo,gaul):
try:
type="LDM3D"
los=""
tre='./tmpo/'+fnamo+'.json'
tra='./tmpo/'+fnamo+'_rgb_0.png'
trm='./tmpo/'+fnamo+'_rgb_1.png'
trh='./tmpo/'+fnamo+'_dep_0.png'
trv='./tmpo/'+fnamo+'_dep_1.png'
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"]
flng=[itm[::-1] for itm in flng]
ptn = r"\b" + r"\b|\b".join(flng) + r"\b"
if re.search(ptn, prompt, re.IGNORECASE):
print("onon buddy")
else:
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type}
with open(tre, 'w') as f:
json.dump(dobj, f)
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,}
with open(tre, 'w') as f:
json.dump(dobj, f)
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN)
try:
for pgn in glob.glob('./tmpo/*.png'):
os.remove(pgn)
for jgn in glob.glob('./tmpo/*.json'):
os.remove(jgn)
del tre
del tra
del trm
del trh
del trv
except:
print("cant")
except:
print("failed to make obj")
def plax(gaul,req: gr.Request):
gaul=str(req.headers)
return gaul
def plex(prompt,neg_prompt,stips,nut,wit,het,gaul,progress=gr.Progress(track_tqdm=True)):
gc.collect()
apol=[]
modil="Intel/ldm3d-pano"
fnamo=""+str(int(time.time()))+""
prompt="360 view of a "+prompt+""
if nut == 0:
nm = random.randint(1, 2147483616)
while nm % 32 != 0:
nm = random.randint(1, 2147483616)
else:
nm=nut
generator = torch.Generator(device="cpu").manual_seed(nm)
image = pipe(prompt=[prompt]*2, negative_prompt=[neg_prompt]*2, generator=generator, guidance_scale=7.0, num_inference_steps=stips,height=het,width=wit)
for a, imze in enumerate(image["rgb"]):
apol.append(imze)
imze.save('./tmpo/'+fnamo+'_rgb_'+str(a)+'.png', 'PNG')
for b, imbe in enumerate(image["depth"]):
apol.append(imbe)
imbe.save('./tmpo/'+fnamo+'_dep_'+str(b)+'.png', 'PNG')
chdr(apol,prompt,modil,stips,fnamo,gaul)
return apol
def aip(ill,api_name="/run"):
return
def pit(ill,api_name="/predict"):
return
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface:
##iface.description="Running on cpu, very slow! by JoPmt."
out=gr.Gallery(label="Generated Output Image", columns=1)
inut=gr.Textbox(label="Prompt")
gaul=gr.Textbox(visible=False)
btn=gr.Button("GENERATE")
with gr.Accordion("Advanced Settings", open=False):
inet=gr.Textbox(label="Negative_prompt", value="lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature")
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=20)
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0)
inwt=gr.Slider(label="Width",minimum=256,step=32,maximum=1024,value=1024)
inht=gr.Slider(label="Height",minimum=256,step=32,maximum=1024,value=512)
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,inet,inyt,indt,inwt,inht,gaul])
iface.queue(max_size=1,api_open=False)
iface.launch(max_threads=20,inline=False,show_api=False)