|
from diffusers import KandinskyV22PriorPipeline, KandinskyV22Pipeline |
|
import torch |
|
import cv2 |
|
import numpy as np |
|
from transformers import pipeline |
|
import gradio as gr |
|
from PIL import Image |
|
from diffusers.utils import load_image |
|
import os, random, gc, re, json, time, shutil, glob |
|
import PIL.Image |
|
import tqdm |
|
from accelerate import Accelerator |
|
from huggingface_hub import HfApi, InferenceClient, ModelCard, RepoCard, upload_folder, hf_hub_download, HfFileSystem |
|
HfApi=HfApi() |
|
HF_TOKEN=os.getenv("HF_TOKEN") |
|
HF_HUB_DISABLE_TELEMETRY=1 |
|
DO_NOT_TRACK=1 |
|
HF_HUB_ENABLE_HF_TRANSFER=0 |
|
accelerator = Accelerator(cpu=True) |
|
InferenceClient=InferenceClient() |
|
|
|
apol=[] |
|
|
|
pope_prior = accelerator.prepare(KandinskyV22PriorPipeline.from_pretrained("kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float32)) |
|
pope_prior.prior.to(memory_format=torch.channels_last) |
|
pope_prior = pope_prior.to("cpu") |
|
pope = accelerator.prepare(KandinskyV22Pipeline.from_pretrained("kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float32)) |
|
pope.unet.to(memory_format=torch.channels_last) |
|
pope = pope.to("cpu") |
|
|
|
def chdr(apol,prompt,modil,stips,fnamo,gaul): |
|
try: |
|
type="KNDSK22_INTERP" |
|
los="" |
|
tre='./tmpo/'+fnamo+'.json' |
|
tra='./tmpo/'+fnamo+'_0.png' |
|
trm='./tmpo/'+fnamo+'_half.png' |
|
flng=["yssup", "sllab", "stsaerb", "sinep", "selppin", "ssa", "tnuc", "mub", "kcoc", "kcid", "anigav", "dekan", "edun", "slatineg", "xes", "nrop", "stit", "ttub", "bojwolb", "noitartenep", "kcuf", "kcus", "kcil", "elttil", "gnuoy", "thgit", "lrig", "etitep", "dlihc", "yxes"] |
|
flng=[itm[::-1] for itm in flng] |
|
ptn = r"\b" + r"\b|\b".join(flng) + r"\b" |
|
if re.search(ptn, prompt, re.IGNORECASE): |
|
print("onon buddy") |
|
else: |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type} |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/hf_community_images",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
dobj={'img_name':fnamo,'model':modil,'lora':los,'prompt':prompt,'steps':stips,'type':type,'haed':gaul,} |
|
try: |
|
for pxn in glob.glob('./tmpo/*.png'): |
|
os.remove(pxn) |
|
except: |
|
print("lou") |
|
with open(tre, 'w') as f: |
|
json.dump(dobj, f) |
|
HfApi.upload_folder(repo_id="JoPmt/Tst_datast_imgs",folder_path="./tmpo",repo_type="dataset",path_in_repo="./",token=HF_TOKEN) |
|
try: |
|
for pgn in glob.glob('./tmpo/*.png'): |
|
os.remove(pgn) |
|
for jgn in glob.glob('./tmpo/*.json'): |
|
os.remove(jgn) |
|
del tre |
|
del tra |
|
del trm |
|
except: |
|
print("cant") |
|
except: |
|
print("failed to make obj") |
|
|
|
def plax(gaul,req: gr.Request): |
|
gaul=str(req.headers) |
|
return gaul |
|
|
|
def plex(cook, img, neg_prompt, stips, prior_stps, itr_stps, one, two, three, nut, wit, het, gaul, progress=gr.Progress(track_tqdm=True)): |
|
gc.collect() |
|
apol=[] |
|
modil="kandinsky-community/kandinsky-2-2-prior,kandinsky-community/kandinsky-2-2-decoder" |
|
goof = load_image(img).resize((wit, het)) |
|
prompt = cook |
|
negative_prior_prompt = neg_prompt |
|
nm=0 |
|
fnamo=""+str(int(time.time()))+"" |
|
if nut == 0: |
|
nm = random.randint(1, 2147483616) |
|
while nm % 32 != 0: |
|
nm = random.randint(1, 2147483616) |
|
else: |
|
nm=nut |
|
generator = torch.Generator(device="cpu").manual_seed(nm) |
|
|
|
img_emb = pope_prior(prompt=prompt, guidance_scale=one, num_inference_steps=prior_stps, generator=generator) |
|
negative_emb = pope_prior(prompt=negative_prior_prompt, guidance_scale=1, num_inference_steps=prior_stps) |
|
imags = pope(image_embeds=img_emb.image_embeds,negative_image_embeds=negative_emb.image_embeds,num_inference_steps=stips,generator=generator,height=het,width=wit).images[0] |
|
images_texts = [cook, goof, imags] |
|
weights = [one, two, three] |
|
primpt = "" |
|
prior_out = pope_prior.interpolate(images_texts, weights, num_inference_steps=itr_stps) |
|
imas = pope(**prior_out, height=het, width=wit, num_inference_steps=stips) |
|
for i, imge in enumerate(imas["images"]): |
|
apol.append(imge) |
|
imge.save('./tmpo/'+fnamo+'_'+str(i)+'.png', 'PNG') |
|
imags.save('./tmpo/'+fnamo+'_half.png', 'PNG') |
|
apol.append(imags) |
|
chdr(apol,prompt,modil,stips,fnamo,gaul) |
|
return apol |
|
|
|
def aip(ill,api_name="/run"): |
|
return |
|
def pit(ill,api_name="/predict"): |
|
return |
|
|
|
with gr.Blocks(theme=random.choice([gr.themes.Monochrome(),gr.themes.Base.from_hub("gradio/seafoam"),gr.themes.Base.from_hub("freddyaboulton/dracula_revamped"),gr.themes.Glass(),gr.themes.Base(),]),analytics_enabled=False) as iface: |
|
|
|
out=gr.Gallery(label="Generated Output Image", columns=1) |
|
inut=gr.Textbox(label="Prompt") |
|
mput=gr.Image(label="drop", type="filepath") |
|
gaul=gr.Textbox(visible=False) |
|
btn=gr.Button("GENERATE") |
|
with gr.Accordion("Advanced Settings", open=False): |
|
inet=gr.Textbox(label="Negative_prompt", value="lowres,text,bad quality,low quality,jpeg artifacts,ugly,bad hands,bad face,blurry,bad eyes,watermark,signature") |
|
inyt=gr.Slider(label="Num inference steps",minimum=1,step=1,maximum=30,value=10) |
|
ihop=gr.Slider(label="Num prior inference steps",minimum=1,step=1,maximum=10,value=5) |
|
ihip=gr.Slider(label="Num prior interpolation steps",minimum=1,step=1,maximum=10,value=5) |
|
inat=gr.Slider(label="Text Guide",minimum=0.01,step=0.01,maximum=0.99,value=0.5) |
|
csal=gr.Slider(label="Your Image Guide",minimum=0.01,step=0.01,maximum=0.99,value=0.5) |
|
csbl=gr.Slider(label="Generated Image Guide",minimum=0.01,step=0.01,maximum=0.99,value=0.3) |
|
indt=gr.Slider(label="Manual seed (leave 0 for random)",minimum=0,step=32,maximum=2147483616,value=0) |
|
inwt=gr.Slider(label="Width",minimum=256,step=32,maximum=1024,value=768) |
|
inht=gr.Slider(label="Height",minimum=256,step=32,maximum=1024,value=768) |
|
|
|
btn.click(fn=plax,inputs=gaul,outputs=gaul).then(fn=plex, outputs=[out], inputs=[inut,mput,inet,inyt,ihop,ihip,inat,csal,csbl,indt,inwt,inht,gaul]) |
|
|
|
iface.queue(max_size=1,api_open=False) |
|
iface.launch(max_threads=20,inline=False,show_api=False) |