adding main
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import matplotlib.pyplot as plt
|
3 |
+
import matplotlib
|
4 |
+
import json
|
5 |
+
import pickle as pck
|
6 |
+
import joblib
|
7 |
+
import pandas as pd
|
8 |
+
|
9 |
+
#reading the data base for market information
|
10 |
+
db = pd.read_csv('/content/database.csv')
|
11 |
+
|
12 |
+
#loading the feature list
|
13 |
+
with open('/content/features.json') as f:
|
14 |
+
features = json.load(f)
|
15 |
+
|
16 |
+
#loading our encoder
|
17 |
+
with open(r"/content/columnTransformer.pickle", "rb") as file:
|
18 |
+
encoder = pck.load(file)
|
19 |
+
model = joblib.load("/content/model.joblib")
|
20 |
+
|
21 |
+
months = {'January': 1.0, 'February': 2.0, 'March': 3.0, 'April': 4.0, 'May': 5.0, 'June': 6.0, 'July': 7.0, 'August': 8.0, 'September': 9.0, 'October': 10.0, 'November': 11.0, 'December': 12.0}
|
22 |
+
|
23 |
+
def encode(region,division,market,category, commodity, month):
|
24 |
+
encoded = encoder.transform([[months[month], region, division,market,category,commodity]])
|
25 |
+
return encoded
|
26 |
+
|
27 |
+
def predict(inp, quantity):
|
28 |
+
pred = model.predict(inp.toarray())
|
29 |
+
pred = '{:.2f}'.format(abs(pred[0])*quantity)
|
30 |
+
return float(pred)
|
31 |
+
|
32 |
+
|
33 |
+
def plot_fig(compared,market):
|
34 |
+
#ploting figure for comarison
|
35 |
+
compared.sort(key=lambda tup: tup[1])
|
36 |
+
mk_name = [ m_name[0] for m_name in compared]
|
37 |
+
prices = [ price[1] for price in compared]
|
38 |
+
colors = ["red" if i == market else "blue" for i in mk_name]
|
39 |
+
fig = plt.figure(figsize=(15,9))
|
40 |
+
plt.bar(mk_name, prices,width=0.5, color=colors)
|
41 |
+
plt.title('Price compared to other markets')
|
42 |
+
#plt.xlabel('Markets')
|
43 |
+
plt.xticks(rotation=45)
|
44 |
+
plt.ylabel('Price (Fcfa)')
|
45 |
+
return fig
|
46 |
+
|
47 |
+
def compararator(region,division,market,category, commodity, month, quantity):
|
48 |
+
#compare prediction for other marlkets
|
49 |
+
db_cop = db[db.market!= market]
|
50 |
+
samples = db_cop.sample(5)
|
51 |
+
compared = []
|
52 |
+
#predict for the given input
|
53 |
+
inp = encode(region,division,market,category, commodity, month)
|
54 |
+
pred = predict(inp,quantity)
|
55 |
+
compared.append((market,pred))
|
56 |
+
|
57 |
+
#predict for 5 random markets for price comparison
|
58 |
+
for index, sample in samples.iterrows():
|
59 |
+
inp = encode(sample['region'],sample['division'],sample['market'],category, commodity, month)
|
60 |
+
ypred = predict(inp,quantity)
|
61 |
+
compared.append((sample['market'],ypred))
|
62 |
+
fig = plot_fig(compared, market)
|
63 |
+
return pred, fig
|
64 |
+
|
65 |
+
|
66 |
+
|
67 |
+
def evaluate(region,division,market,category, commodity, month, quantity):
|
68 |
+
ypred,fig = compararator(region,division,market,category, commodity, month, quantity)
|
69 |
+
out = str(ypred) + "Fcfa for " +str(quantity)+ " (KG/L/P)"
|
70 |
+
st = "Price of " + commodity + " in " + market + " is : " + out
|
71 |
+
|
72 |
+
return st, fig
|
73 |
+
|
74 |
+
|
75 |
+
inputs = [
|
76 |
+
gr.Dropdown(features['regions'], label="Region"),
|
77 |
+
gr.Dropdown(features['division'], label="Division"),
|
78 |
+
gr.Dropdown(features['market'], label="market"),
|
79 |
+
gr.Dropdown(features['categories'], label="category"),
|
80 |
+
gr.Dropdown(features['commodity'], label="commodity"),
|
81 |
+
gr.Dropdown(list(months.keys()), label="Month"),
|
82 |
+
gr.Slider(1, 100, value=1, step=0.5, label= "quantity (Kilogram / Liters)", interactive=True),
|
83 |
+
]
|
84 |
+
outputs = ["label", gr.Plot(label="Prices in other markets").style(container=True)]
|
85 |
+
desc= "Machine learning for food price prediction in Various Cameroon markets (Retail Price)"
|
86 |
+
camfreg = gr.Interface(
|
87 |
+
fn=evaluate,
|
88 |
+
inputs=inputs,
|
89 |
+
outputs=outputs,
|
90 |
+
cache_examples=True,
|
91 |
+
article='KG = kilogram, L = Liter, P = piece',
|
92 |
+
title= 'Camfreg : Cameroon food prices Prediction',
|
93 |
+
description= desc
|
94 |
+
)
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
camfreg.launch(share=True)
|