JinHyeong99 commited on
Commit
6038241
ยท
1 Parent(s): 6d386e9
Files changed (4) hide show
  1. app.py +27 -103
  2. image1.jpg +0 -0
  3. image2.jpg +0 -0
  4. image3.jpg +0 -0
app.py CHANGED
@@ -1,111 +1,35 @@
1
  import gradio as gr
2
-
3
- from matplotlib import gridspec
4
- import matplotlib.pyplot as plt
5
- import numpy as np
6
  from PIL import Image
7
- import tensorflow as tf
8
- from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
9
-
10
- feature_extractor = SegformerFeatureExtractor.from_pretrained(
11
- "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
12
- )
13
- model = TFSegformerForSemanticSegmentation.from_pretrained(
14
- "nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
15
- )
16
-
17
- def ade_palette():
18
- """ADE20K palette that maps each class to RGB values."""
19
- return [
20
- [255,0,0], #๋นจ๊ฐ•
21
- [255,228,0], #๋…ธ๋ž‘
22
- [171,242,0], # ์—ฐ๋‘
23
- [0,216,255], #ํ•˜๋Š˜
24
- [0,0,255], #ํŒŒ๋ž‘
25
- [255,0,221], #ํ•‘ํฌ
26
- [116,116,116], #ํšŒ์ƒ‰
27
- [95,0,255], #๋ณด๋ผ
28
- [255,94,0], #์ฃผํ™ฉ
29
- [71,200,62], #์ดˆ๋ก
30
- [153,0,76], #๋งˆ์  ํƒ€
31
- [67,116,217], #์• ๋งคํ•œํ•˜๋Š˜ + ํŒŒ๋ž‘
32
- [153,112,0], #๊ฒจ์ž
33
- [87,129,0], #๋…น์ƒ‰
34
- [255,169,169], #๋ถ„ํ™๋ถ„ํ™
35
- [35,30,183], #์–ด๋‘์šด ํŒŒ๋ž‘
36
- [225,186,133], #์‚ด์ƒ‰
37
- [206,251,201], #์—ฐํ•œ์ดˆ๋ก
38
- [165,102,255] #์• ๋งคํ•œ ๋ณด๋ผ
39
- ]
40
-
41
- labels_list = []
42
-
43
- with open(r'labels.txt', 'r') as fp:
44
- for line in fp:
45
- labels_list.append(line[:-1])
46
-
47
- colormap = np.asarray(ade_palette())
48
-
49
- def label_to_color_image(label):
50
- if label.ndim != 2:
51
- raise ValueError("Expect 2-D input label")
52
-
53
- if np.max(label) >= len(colormap):
54
- raise ValueError("label value too large.")
55
- return colormap[label]
56
-
57
- def draw_plot(pred_img, seg):
58
- fig = plt.figure(figsize=(20, 15))
59
-
60
- grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
61
-
62
- plt.subplot(grid_spec[0])
63
- plt.imshow(pred_img)
64
- plt.axis('off')
65
- LABEL_NAMES = np.asarray(labels_list)
66
- FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
67
- FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
68
-
69
- unique_labels = np.unique(seg.numpy().astype("uint8"))
70
- ax = plt.subplot(grid_spec[1])
71
- plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
72
- ax.yaxis.tick_right()
73
- plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
74
- plt.xticks([], [])
75
- ax.tick_params(width=0.0, labelsize=25)
76
- return fig
77
 
78
- def sepia(input_img):
79
- input_img = Image.fromarray(input_img)
 
80
 
81
- inputs = feature_extractor(images=input_img, return_tensors="tf")
 
 
82
  outputs = model(**inputs)
83
  logits = outputs.logits
84
 
85
- logits = tf.transpose(logits, [0, 2, 3, 1])
86
- logits = tf.image.resize(
87
- logits, input_img.size[::-1]
88
- ) # We reverse the shape of `image` because `image.size` returns width and height.
89
- seg = tf.math.argmax(logits, axis=-1)[0]
90
-
91
- color_seg = np.zeros(
92
- (seg.shape[0], seg.shape[1], 3), dtype=np.uint8
93
- ) # height, width, 3
94
- for label, color in enumerate(colormap):
95
- color_seg[seg.numpy() == label, :] = color
96
-
97
- # Show image + mask
98
- pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
99
- pred_img = pred_img.astype(np.uint8)
100
-
101
- fig = draw_plot(pred_img, seg)
102
- return fig
103
-
104
- demo = gr.Interface(fn=sepia,
105
- inputs=gr.Image(shape=(400, 600), type='pil'),
106
- outputs=['plot'],
107
- examples=["image1.jpg", "image2.jpg", "image3.jpg"],
108
- allow_flagging='never')
109
-
110
 
111
- demo.launch()
 
 
1
  import gradio as gr
2
+ from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
 
 
 
3
  from PIL import Image
4
+ import numpy as np
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
 
6
+ # ๋ชจ๋ธ๊ณผ ํŠน์ง• ์ถ”์ถœ๊ธฐ ๋ถˆ๋Ÿฌ์˜ค๊ธฐ
7
+ feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
8
+ model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
9
 
10
+ def segment_image(image):
11
+ # ์ด๋ฏธ์ง€๋ฅผ ์ฒ˜๋ฆฌํ•˜๊ณ  ๋ชจ๋ธ์— ์ „๋‹ฌํ•˜๊ธฐ
12
+ inputs = feature_extractor(images=image, return_tensors="pt")
13
  outputs = model(**inputs)
14
  logits = outputs.logits
15
 
16
+ # ๊ฒฐ๊ณผ ์ฒ˜๋ฆฌ ๋ฐ ์ด๋ฏธ์ง€๋กœ ๋ณ€ํ™˜
17
+ result = logits.argmax(dim=1)[0]
18
+ result = result.cpu().detach().numpy()
19
+ result_image = Image.fromarray(result.astype(np.uint8), mode="P")
20
+
21
+ # ๊ฒฐ๊ณผ ์ด๋ฏธ์ง€ ๋ฐ˜ํ™˜
22
+ return result_image
23
+
24
+ # Gradio ์ธํ„ฐํŽ˜์ด์Šค ์ •์˜
25
+ iface = gr.Interface(
26
+ fn=segment_image,
27
+ inputs=gr.inputs.Image(type="pil"),
28
+ examples = ['image1.jpg', 'image2.jpg', 'image3.jpg'],
29
+ outputs="image",
30
+ title="SegFormer Image Segmentation",
31
+ description="Upload an image to segment it using the SegFormer model trained on Cityscapes dataset."
32
+ )
 
 
 
 
 
 
 
 
33
 
34
+ # ์ธํ„ฐํŽ˜์ด์Šค ์‹คํ–‰
35
+ iface.launch()
image1.jpg ADDED
image2.jpg ADDED
image3.jpg ADDED