Spaces:
Runtime error
Runtime error
JinHyeong99
commited on
Commit
ยท
6038241
1
Parent(s):
6d386e9
- app.py +27 -103
- image1.jpg +0 -0
- image2.jpg +0 -0
- image3.jpg +0 -0
app.py
CHANGED
@@ -1,111 +1,35 @@
|
|
1 |
import gradio as gr
|
2 |
-
|
3 |
-
from matplotlib import gridspec
|
4 |
-
import matplotlib.pyplot as plt
|
5 |
-
import numpy as np
|
6 |
from PIL import Image
|
7 |
-
import
|
8 |
-
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
9 |
-
|
10 |
-
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
11 |
-
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
12 |
-
)
|
13 |
-
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
14 |
-
"nvidia/segformer-b5-finetuned-cityscapes-1024-1024"
|
15 |
-
)
|
16 |
-
|
17 |
-
def ade_palette():
|
18 |
-
"""ADE20K palette that maps each class to RGB values."""
|
19 |
-
return [
|
20 |
-
[255,0,0], #๋นจ๊ฐ
|
21 |
-
[255,228,0], #๋
ธ๋
|
22 |
-
[171,242,0], # ์ฐ๋
|
23 |
-
[0,216,255], #ํ๋
|
24 |
-
[0,0,255], #ํ๋
|
25 |
-
[255,0,221], #ํํฌ
|
26 |
-
[116,116,116], #ํ์
|
27 |
-
[95,0,255], #๋ณด๋ผ
|
28 |
-
[255,94,0], #์ฃผํฉ
|
29 |
-
[71,200,62], #์ด๋ก
|
30 |
-
[153,0,76], #๋ง์ ํ
|
31 |
-
[67,116,217], #์ ๋งคํํ๋ + ํ๋
|
32 |
-
[153,112,0], #๊ฒจ์
|
33 |
-
[87,129,0], #๋
น์
|
34 |
-
[255,169,169], #๋ถํ๋ถํ
|
35 |
-
[35,30,183], #์ด๋์ด ํ๋
|
36 |
-
[225,186,133], #์ด์
|
37 |
-
[206,251,201], #์ฐํ์ด๋ก
|
38 |
-
[165,102,255] #์ ๋งคํ ๋ณด๋ผ
|
39 |
-
]
|
40 |
-
|
41 |
-
labels_list = []
|
42 |
-
|
43 |
-
with open(r'labels.txt', 'r') as fp:
|
44 |
-
for line in fp:
|
45 |
-
labels_list.append(line[:-1])
|
46 |
-
|
47 |
-
colormap = np.asarray(ade_palette())
|
48 |
-
|
49 |
-
def label_to_color_image(label):
|
50 |
-
if label.ndim != 2:
|
51 |
-
raise ValueError("Expect 2-D input label")
|
52 |
-
|
53 |
-
if np.max(label) >= len(colormap):
|
54 |
-
raise ValueError("label value too large.")
|
55 |
-
return colormap[label]
|
56 |
-
|
57 |
-
def draw_plot(pred_img, seg):
|
58 |
-
fig = plt.figure(figsize=(20, 15))
|
59 |
-
|
60 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
61 |
-
|
62 |
-
plt.subplot(grid_spec[0])
|
63 |
-
plt.imshow(pred_img)
|
64 |
-
plt.axis('off')
|
65 |
-
LABEL_NAMES = np.asarray(labels_list)
|
66 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
67 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
68 |
-
|
69 |
-
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
70 |
-
ax = plt.subplot(grid_spec[1])
|
71 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
72 |
-
ax.yaxis.tick_right()
|
73 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
74 |
-
plt.xticks([], [])
|
75 |
-
ax.tick_params(width=0.0, labelsize=25)
|
76 |
-
return fig
|
77 |
|
78 |
-
|
79 |
-
|
|
|
80 |
|
81 |
-
|
|
|
|
|
82 |
outputs = model(**inputs)
|
83 |
logits = outputs.logits
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
return fig
|
103 |
-
|
104 |
-
demo = gr.Interface(fn=sepia,
|
105 |
-
inputs=gr.Image(shape=(400, 600), type='pil'),
|
106 |
-
outputs=['plot'],
|
107 |
-
examples=["image1.jpg", "image2.jpg", "image3.jpg"],
|
108 |
-
allow_flagging='never')
|
109 |
-
|
110 |
|
111 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
+
from transformers import SegformerFeatureExtractor, SegformerForSemanticSegmentation
|
|
|
|
|
|
|
3 |
from PIL import Image
|
4 |
+
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
# ๋ชจ๋ธ๊ณผ ํน์ง ์ถ์ถ๊ธฐ ๋ถ๋ฌ์ค๊ธฐ
|
7 |
+
feature_extractor = SegformerFeatureExtractor.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
8 |
+
model = SegformerForSemanticSegmentation.from_pretrained("nvidia/segformer-b5-finetuned-cityscapes-1024-1024")
|
9 |
|
10 |
+
def segment_image(image):
|
11 |
+
# ์ด๋ฏธ์ง๋ฅผ ์ฒ๋ฆฌํ๊ณ ๋ชจ๋ธ์ ์ ๋ฌํ๊ธฐ
|
12 |
+
inputs = feature_extractor(images=image, return_tensors="pt")
|
13 |
outputs = model(**inputs)
|
14 |
logits = outputs.logits
|
15 |
|
16 |
+
# ๊ฒฐ๊ณผ ์ฒ๋ฆฌ ๋ฐ ์ด๋ฏธ์ง๋ก ๋ณํ
|
17 |
+
result = logits.argmax(dim=1)[0]
|
18 |
+
result = result.cpu().detach().numpy()
|
19 |
+
result_image = Image.fromarray(result.astype(np.uint8), mode="P")
|
20 |
+
|
21 |
+
# ๊ฒฐ๊ณผ ์ด๋ฏธ์ง ๋ฐํ
|
22 |
+
return result_image
|
23 |
+
|
24 |
+
# Gradio ์ธํฐํ์ด์ค ์ ์
|
25 |
+
iface = gr.Interface(
|
26 |
+
fn=segment_image,
|
27 |
+
inputs=gr.inputs.Image(type="pil"),
|
28 |
+
examples = ['image1.jpg', 'image2.jpg', 'image3.jpg'],
|
29 |
+
outputs="image",
|
30 |
+
title="SegFormer Image Segmentation",
|
31 |
+
description="Upload an image to segment it using the SegFormer model trained on Cityscapes dataset."
|
32 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
33 |
|
34 |
+
# ์ธํฐํ์ด์ค ์คํ
|
35 |
+
iface.launch()
|
image1.jpg
ADDED
image2.jpg
ADDED
image3.jpg
ADDED