Spaces:
Runtime error
Runtime error
Enhanced app.py with RAG functionality: file upload, chunking with unstructured, embedding with sentence-transformers, vector storage with ChromaDB, and semantic retrieval QA
Browse files
app.py
CHANGED
|
@@ -1,11 +1,109 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import random
|
|
|
|
|
|
|
|
|
|
| 3 |
from smolagents import GradioUI, CodeAgent, HfApiModel
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
# Import our custom tools from their modules
|
| 6 |
from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
|
| 7 |
from retriever import load_guest_dataset
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Initialize the Hugging Face model
|
| 10 |
model = HfApiModel()
|
| 11 |
|
|
@@ -21,13 +119,102 @@ hub_stats_tool = HubStatsTool()
|
|
| 21 |
# Load the guest dataset and initialize the guest info tool
|
| 22 |
guest_info_tool = load_guest_dataset()
|
| 23 |
|
| 24 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
alfred = CodeAgent(
|
| 26 |
-
tools=[guest_info_tool, weather_info_tool, hub_stats_tool, search_tool],
|
| 27 |
model=model,
|
| 28 |
add_base_tools=True, # Add any additional base tools
|
| 29 |
planning_interval=3 # Enable planning every 3 steps
|
| 30 |
)
|
| 31 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
if __name__ == "__main__":
|
| 33 |
-
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import random
|
| 3 |
+
import os
|
| 4 |
+
import tempfile
|
| 5 |
+
from pathlib import Path
|
| 6 |
from smolagents import GradioUI, CodeAgent, HfApiModel
|
| 7 |
+
from sentence_transformers import SentenceTransformer
|
| 8 |
+
import chromadb
|
| 9 |
+
from unstructured.partition.auto import partition
|
| 10 |
+
import numpy as np
|
| 11 |
+
from typing import List, Optional
|
| 12 |
|
| 13 |
# Import our custom tools from their modules
|
| 14 |
from tools import DuckDuckGoSearchTool, WeatherInfoTool, HubStatsTool
|
| 15 |
from retriever import load_guest_dataset
|
| 16 |
|
| 17 |
+
# Initialize embedding model
|
| 18 |
+
embedding_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 19 |
+
|
| 20 |
+
# Initialize ChromaDB
|
| 21 |
+
chroma_client = chromadb.Client()
|
| 22 |
+
collection = chroma_client.get_or_create_collection(name="documents")
|
| 23 |
+
|
| 24 |
+
class RAGDocumentProcessor:
|
| 25 |
+
def __init__(self, embedding_model, collection):
|
| 26 |
+
self.embedding_model = embedding_model
|
| 27 |
+
self.collection = collection
|
| 28 |
+
|
| 29 |
+
def process_document(self, file_path: str) -> List[str]:
|
| 30 |
+
"""Process document using unstructured for chunking"""
|
| 31 |
+
elements = partition(filename=file_path)
|
| 32 |
+
chunks = []
|
| 33 |
+
|
| 34 |
+
# Group elements into meaningful chunks
|
| 35 |
+
current_chunk = ""
|
| 36 |
+
for element in elements:
|
| 37 |
+
text = str(element)
|
| 38 |
+
if len(current_chunk + text) > 1000: # Max chunk size
|
| 39 |
+
if current_chunk:
|
| 40 |
+
chunks.append(current_chunk.strip())
|
| 41 |
+
current_chunk = text
|
| 42 |
+
else:
|
| 43 |
+
current_chunk += " " + text
|
| 44 |
+
|
| 45 |
+
if current_chunk:
|
| 46 |
+
chunks.append(current_chunk.strip())
|
| 47 |
+
|
| 48 |
+
return chunks
|
| 49 |
+
|
| 50 |
+
def add_document_to_vector_store(self, file_path: str, filename: str):
|
| 51 |
+
"""Add document chunks to ChromaDB vector store"""
|
| 52 |
+
chunks = self.process_document(file_path)
|
| 53 |
+
|
| 54 |
+
# Generate embeddings
|
| 55 |
+
embeddings = self.embedding_model.encode(chunks).tolist()
|
| 56 |
+
|
| 57 |
+
# Create IDs and metadata
|
| 58 |
+
ids = [f"{filename}_{i}" for i in range(len(chunks))]
|
| 59 |
+
metadatas = [{"filename": filename, "chunk_id": i} for i in range(len(chunks))]
|
| 60 |
+
|
| 61 |
+
# Add to collection
|
| 62 |
+
self.collection.add(
|
| 63 |
+
embeddings=embeddings,
|
| 64 |
+
documents=chunks,
|
| 65 |
+
metadatas=metadatas,
|
| 66 |
+
ids=ids
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
return len(chunks)
|
| 70 |
+
|
| 71 |
+
def semantic_search(self, query: str, n_results: int = 5) -> List[str]:
|
| 72 |
+
"""Perform semantic search using ChromaDB"""
|
| 73 |
+
query_embedding = self.embedding_model.encode([query]).tolist()
|
| 74 |
+
|
| 75 |
+
results = self.collection.query(
|
| 76 |
+
query_embeddings=query_embedding,
|
| 77 |
+
n_results=n_results
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
return results['documents'][0] if results['documents'] else []
|
| 81 |
+
|
| 82 |
+
# Initialize RAG processor
|
| 83 |
+
rag_processor = RAGDocumentProcessor(embedding_model, collection)
|
| 84 |
+
|
| 85 |
+
class SemanticRAGTool:
|
| 86 |
+
"""Tool for semantic retrieval and QA using uploaded documents"""
|
| 87 |
+
|
| 88 |
+
name = "semantic_rag_search"
|
| 89 |
+
description = "Search through uploaded documents using semantic similarity and provide context-aware responses"
|
| 90 |
+
|
| 91 |
+
def __call__(self, query: str) -> str:
|
| 92 |
+
"""Perform semantic search and return relevant context"""
|
| 93 |
+
relevant_docs = rag_processor.semantic_search(query, n_results=3)
|
| 94 |
+
|
| 95 |
+
if not relevant_docs:
|
| 96 |
+
return "No relevant documents found. Please upload documents first."
|
| 97 |
+
|
| 98 |
+
context = "\n\n".join(relevant_docs)
|
| 99 |
+
|
| 100 |
+
response = f"Based on the uploaded documents, here's the relevant information:\n\n{context}\n\nThis information can help answer your query: {query}"
|
| 101 |
+
|
| 102 |
+
return response
|
| 103 |
+
|
| 104 |
+
# Initialize the semantic RAG tool
|
| 105 |
+
semantic_rag_tool = SemanticRAGTool()
|
| 106 |
+
|
| 107 |
# Initialize the Hugging Face model
|
| 108 |
model = HfApiModel()
|
| 109 |
|
|
|
|
| 119 |
# Load the guest dataset and initialize the guest info tool
|
| 120 |
guest_info_tool = load_guest_dataset()
|
| 121 |
|
| 122 |
+
def upload_and_process_file(file):
|
| 123 |
+
"""Handle file upload and processing"""
|
| 124 |
+
if file is None:
|
| 125 |
+
return "No file uploaded."
|
| 126 |
+
|
| 127 |
+
try:
|
| 128 |
+
# Get the file path
|
| 129 |
+
file_path = file.name
|
| 130 |
+
filename = Path(file_path).name
|
| 131 |
+
|
| 132 |
+
# Process and add to vector store
|
| 133 |
+
num_chunks = rag_processor.add_document_to_vector_store(file_path, filename)
|
| 134 |
+
|
| 135 |
+
return f"Successfully processed '{filename}' into {num_chunks} chunks and added to vector store."
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
return f"Error processing file: {str(e)}"
|
| 139 |
+
|
| 140 |
+
# Create Alfred with all the tools including the new RAG tool
|
| 141 |
alfred = CodeAgent(
|
| 142 |
+
tools=[guest_info_tool, weather_info_tool, hub_stats_tool, search_tool, semantic_rag_tool],
|
| 143 |
model=model,
|
| 144 |
add_base_tools=True, # Add any additional base tools
|
| 145 |
planning_interval=3 # Enable planning every 3 steps
|
| 146 |
)
|
| 147 |
|
| 148 |
+
# Create custom Gradio interface with file upload
|
| 149 |
+
def create_rag_interface():
|
| 150 |
+
"""Create enhanced Gradio interface with file upload and RAG capabilities"""
|
| 151 |
+
|
| 152 |
+
with gr.Blocks(title="Production RAG Agent") as demo:
|
| 153 |
+
gr.Markdown("# Production RAG Agent with Document Upload")
|
| 154 |
+
gr.Markdown("Upload documents and ask questions using semantic search and AI reasoning.")
|
| 155 |
+
|
| 156 |
+
with gr.Row():
|
| 157 |
+
with gr.Column(scale=1):
|
| 158 |
+
file_upload = gr.File(
|
| 159 |
+
label="Upload Documents",
|
| 160 |
+
file_types=[".pdf", ".docx", ".txt", ".md", ".html"],
|
| 161 |
+
file_count="multiple"
|
| 162 |
+
)
|
| 163 |
+
upload_btn = gr.Button("Process Documents")
|
| 164 |
+
upload_status = gr.Textbox(
|
| 165 |
+
label="Upload Status",
|
| 166 |
+
interactive=False
|
| 167 |
+
)
|
| 168 |
+
|
| 169 |
+
with gr.Column(scale=2):
|
| 170 |
+
# Embed the GradioUI from smolagents
|
| 171 |
+
chatbot = gr.Chatbot(label="AI Assistant")
|
| 172 |
+
msg_input = gr.Textbox(
|
| 173 |
+
label="Message",
|
| 174 |
+
placeholder="Ask questions about uploaded documents or anything else..."
|
| 175 |
+
)
|
| 176 |
+
send_btn = gr.Button("Send")
|
| 177 |
+
clear_btn = gr.Button("Clear")
|
| 178 |
+
|
| 179 |
+
# File upload handler
|
| 180 |
+
upload_btn.click(
|
| 181 |
+
fn=lambda files: "\n".join([upload_and_process_file(file) for file in files]) if files else "No files selected.",
|
| 182 |
+
inputs=[file_upload],
|
| 183 |
+
outputs=[upload_status]
|
| 184 |
+
)
|
| 185 |
+
|
| 186 |
+
# Chat functionality
|
| 187 |
+
def respond(message, history):
|
| 188 |
+
try:
|
| 189 |
+
# Use Alfred to generate response
|
| 190 |
+
response = alfred.run(message)
|
| 191 |
+
history.append((message, str(response)))
|
| 192 |
+
return history, ""
|
| 193 |
+
except Exception as e:
|
| 194 |
+
error_msg = f"Error: {str(e)}"
|
| 195 |
+
history.append((message, error_msg))
|
| 196 |
+
return history, ""
|
| 197 |
+
|
| 198 |
+
send_btn.click(
|
| 199 |
+
respond,
|
| 200 |
+
inputs=[msg_input, chatbot],
|
| 201 |
+
outputs=[chatbot, msg_input]
|
| 202 |
+
)
|
| 203 |
+
|
| 204 |
+
msg_input.submit(
|
| 205 |
+
respond,
|
| 206 |
+
inputs=[msg_input, chatbot],
|
| 207 |
+
outputs=[chatbot, msg_input]
|
| 208 |
+
)
|
| 209 |
+
|
| 210 |
+
clear_btn.click(
|
| 211 |
+
lambda: ([], ""),
|
| 212 |
+
outputs=[chatbot, msg_input]
|
| 213 |
+
)
|
| 214 |
+
|
| 215 |
+
return demo
|
| 216 |
+
|
| 217 |
if __name__ == "__main__":
|
| 218 |
+
# Launch the enhanced RAG interface
|
| 219 |
+
demo = create_rag_interface()
|
| 220 |
+
demo.launch()
|