hjimjim commited on
Commit
081442b
·
1 Parent(s): 3b38d19

model upload: reconstruct

Browse files
Files changed (5) hide show
  1. VAE.py +140 -0
  2. app.py +188 -2
  3. model.pth +3 -0
  4. requirements.txt +6 -0
  5. vae_model_all.pth +3 -0
VAE.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import torch.nn.functional as F
4
+ import torch.optim as optim
5
+
6
+ class VAE(nn.Module):
7
+ def __init__(self, input_dim, hidden_dim, latent_dim, num_styles=2):
8
+ super(VAE, self).__init__()
9
+ self.input_dim = input_dim
10
+ self.latent_dim = latent_dim
11
+ self.hidden_dim = hidden_dim
12
+
13
+ self.encode = Encoder(self.input_dim, self.hidden_dim, self.latent_dim)
14
+ self.decode = Decoder(self.latent_dim, self.hidden_dim, self.input_dim)
15
+ self.style_classifier = StyleClassifier(self.latent_dim, num_styles)
16
+
17
+ def reparameterize(self, mu, logvar):
18
+ std = torch.exp(0.5 * logvar)
19
+ eps = torch.randn_like(std)
20
+ return mu + eps * std
21
+
22
+ def forward(self, x, right=None, left=None, check=False):
23
+ mu, logvar, output = self.encode(x)
24
+ z = self.reparameterize(mu, logvar)
25
+ style_pred = self.style_classifier(z)
26
+ decod = self.decode(z, output)
27
+ return decod, mu, logvar, style_pred
28
+
29
+ class Encoder(nn.Module):
30
+ def __init__(self, input_dim, hidden_dim, latent_dim):
31
+ super(Encoder, self).__init__()
32
+ self.hidden_dim = hidden_dim
33
+
34
+ self.gru_piano_right = nn.GRU(input_dim, hidden_dim, batch_first=True)
35
+ self.gru_piano_left = nn.GRU(input_dim, hidden_dim, batch_first=True)
36
+
37
+ self.dense_layer = nn.Linear(hidden_dim * 2, hidden_dim, bias = True)
38
+
39
+ self.fc_mu = nn.Linear(hidden_dim, latent_dim, bias = True)
40
+ self.fc_logvar = nn.Linear(hidden_dim, latent_dim, bias = True)
41
+
42
+ def forward(self, x):
43
+ input_list = torch.chunk(x, 2, dim=1)
44
+ right_input = input_list[0] # torch.Size([Batch Size, Sequence length, input length])
45
+ left_input = input_list[1]
46
+
47
+ # initialize hidden state
48
+ h0 = torch.zeros(1, right_input.size(0), self.hidden_dim, device=right_input.device)
49
+
50
+ # Forward pass through GRU for each instrument
51
+ o_r, h_r = self.gru_piano_right(right_input, h0)
52
+ o_l, h_l = self.gru_piano_left(left_input, h0)
53
+
54
+ output = torch.cat((o_r, o_l), dim=1)
55
+ h = torch.cat((h_r[-1,], h_l[-1,]), dim=1)
56
+
57
+ h = self.dense_layer(h)
58
+ h = F.relu(h)
59
+ mu = self.fc_mu(h)
60
+ mu = F.relu(mu)
61
+ logvar = self.fc_logvar(h)
62
+ logvar = F.relu(logvar) + 1e-4
63
+ return mu, logvar, output
64
+
65
+
66
+ class Decoder(nn.Module):
67
+ def __init__(self, latent_dim, hidden_dim, output_dim):
68
+ super(Decoder, self).__init__()
69
+ self.latent_dim = latent_dim
70
+ self.output_dim = output_dim
71
+
72
+ self.latent_to_hidden = nn.Linear(latent_dim, latent_dim, bias = True)
73
+
74
+ self.piano_right_layer = nn.Linear(latent_dim, hidden_dim, bias = True)
75
+ self.piano_left_layer = nn.Linear(latent_dim, hidden_dim, bias = True)
76
+
77
+ self.r_layer = nn.Linear(hidden_dim, output_dim, bias = True)
78
+ self.l_layer = nn.Linear(hidden_dim, output_dim, bias = True)
79
+
80
+ self.gru_piano_right_cell = nn.GRUCell(output_dim, hidden_dim)
81
+ self.gru_piano_left_cell = nn.GRUCell(output_dim, hidden_dim)
82
+
83
+
84
+ self.fr_layer = nn.Linear(hidden_dim, output_dim, bias = True)
85
+ self.fl_layer = nn.Linear(hidden_dim , output_dim, bias = True)
86
+
87
+ def forward(self, z, output):
88
+
89
+ h = self.latent_to_hidden(z)
90
+ h = F.relu(h)
91
+
92
+ right = torch.split(output, 150, dim=1)[0]
93
+ left = torch.split(output, 150, dim=1)[1]
94
+
95
+ right = right.permute(1, 0, 2)
96
+ left = left.permute(1, 0, 2)
97
+
98
+ right = self.r_layer(right)
99
+ right = F.tanh(right)
100
+ left = self.l_layer(left)
101
+ left = F.tanh(left)
102
+
103
+
104
+ piano_hidden = self.piano_right_layer(h)
105
+ left_hidden = self.piano_left_layer(h)
106
+
107
+ right_outputs = []
108
+ left_outputs = []
109
+
110
+ for t in range(right.size(0)):
111
+ piano_hidden = self.gru_piano_right_cell(right[t] , piano_hidden)
112
+ left_hidden = self.gru_piano_left_cell(left[t], left_hidden)
113
+
114
+ right_outputs.append(piano_hidden.unsqueeze(1))
115
+ left_outputs.append(left_hidden.unsqueeze(1))
116
+
117
+ # print(right_outputs[0].shape)
118
+ right_outputs = torch.cat(right_outputs, dim=1)
119
+ left_outputs = torch.cat(left_outputs, dim=1)
120
+
121
+ right_outputs = self.fr_layer(right_outputs)
122
+ left_outputs = self.fl_layer(left_outputs)
123
+
124
+ right_outputs = F.sigmoid(right_outputs)
125
+ left_outputs = F.sigmoid(left_outputs)
126
+
127
+ output = torch.cat((right_outputs, left_outputs), dim=1)
128
+
129
+ return output
130
+
131
+ class StyleClassifier(nn.Module):
132
+ def __init__(self, latent_dim, num_styles):
133
+ super(StyleClassifier, self).__init__()
134
+ self.fc1 = nn.Linear(latent_dim, 128)
135
+ self.fc2 = nn.Linear(128, num_styles)
136
+
137
+ def forward(self, z):
138
+ x = F.relu(self.fc1(z))
139
+ x = self.fc2(x)
140
+ return F.softmax(x, dim=-1)
app.py CHANGED
@@ -1,4 +1,190 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
1
  import streamlit as st
2
+ import torch
3
+ import numpy as np
4
+ import matplotlib.pyplot as plt
5
+ from pydub import AudioSegment
6
+ import pretty_midi as pm
7
+ from VAE import VAE
8
+ from midi2audio import FluidSynth
9
+ import pretty_midi as pm
10
+
11
+
12
+ # Define device
13
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+
15
+ # Load VAE model
16
+ @st.cache_resource
17
+ def load_model():
18
+ vae = VAE(input_dim=76, hidden_dim=512, latent_dim=256)
19
+ vae.load_state_dict(torch.load("vae_model_all.pth", map_location=device))
20
+ vae = vae.to(device)
21
+ vae.eval()
22
+ return vae
23
+
24
+ # Function to process the uploaded MIDI file
25
+ def process_midi(file):
26
+ try:
27
+ mid = pm.PrettyMIDI(file)
28
+ fs = 10
29
+ hand_dict = {"right": None, "left": None}
30
+ pitch_list = []
31
+
32
+ for inst in mid.instruments:
33
+ if inst.program // 8 > 0:
34
+ continue
35
+
36
+ piano_roll = inst.get_piano_roll(times=np.arange(0, mid.get_end_time(), 1.0 / fs))
37
+ if np.sum(piano_roll) == 0:
38
+ continue
39
+ hand_pitch = np.where(piano_roll)
40
+ pitch_list.append(np.average(hand_pitch[0]))
41
+
42
+ if len(pitch_list) == 0:
43
+ st.error("No valid piano data found.")
44
+ return None, None
45
+ elif len(pitch_list) == 1:
46
+ hand_dict['right'] = mid.instruments[np.argmax(pitch_list)].get_piano_roll(times=np.arange(0, mid.get_end_time(), 1.0 / fs))
47
+ hand_dict['left'] = np.zeros_like(hand_dict['right'])
48
+ else:
49
+ hand_dict['right'] = mid.instruments[np.argmax(pitch_list)].get_piano_roll(times=np.arange(0, mid.get_end_time(), 1.0 / fs))
50
+ hand_dict['left'] = mid.instruments[np.argmin(pitch_list)].get_piano_roll(times=np.arange(0, mid.get_end_time(), 1.0 / fs))
51
+
52
+ pitch_start, pitch_stop, duration = 24, 100, 150
53
+ right_hand = hand_dict['right'][pitch_start:pitch_stop, 26 : 26 + duration]
54
+ left_hand = hand_dict['left'][pitch_start:pitch_stop, 26 : 26 + duration]
55
+
56
+ if np.sum(right_hand) == 0 or np.sum(left_hand) == 0:
57
+ st.error("Invalid data detected in MIDI file.")
58
+ return None, None
59
+
60
+ return right_hand, left_hand
61
+ except Exception as e:
62
+ st.error(f"Error processing MIDI: {e}")
63
+ return None, None
64
+
65
+ # Run the VAE model for reconstruction
66
+ def reconstruct(right, left, model):
67
+ right_tensor = torch.tensor(right, dtype=torch.float32).to(device)
68
+ left_tensor = torch.tensor(left, dtype=torch.float32).to(device)
69
+
70
+ input_tensor = torch.cat([right_tensor, left_tensor], dim=0)
71
+ input_tensor = input_tensor.unsqueeze(0)
72
+
73
+ print(input_tensor.shape)
74
+ with torch.no_grad():
75
+ recon_data, _, _, _ = model(input_tensor)
76
+
77
+ return recon_data.squeeze(0).cpu().numpy()
78
+
79
+
80
+
81
+ def midi_to_wav(midi_file, wav_file="output.wav", sound_font_path="soundfont.sf2", volume_increase_db=17):
82
+ fs = FluidSynth(sound_font_path)
83
+ fs.midi_to_audio(midi_file, wav_file)
84
+
85
+ audio = AudioSegment.from_wav(wav_file)
86
+ louder_audio = audio + volume_increase_db
87
+
88
+ louder_audio.export(wav_file, format="wav")
89
+
90
+ return wav_file
91
+
92
+ # Create a MIDI stream from piano roll data
93
+ def create_midi_from_piano_roll(right_hand, left_hand, fs=8):
94
+ pm_obj = pm.PrettyMIDI()
95
+
96
+ for hand_data in [right_hand, left_hand]:
97
+ instrument = pm.Instrument(program=0) # Acoustic Grand Piano
98
+ pm_obj.instruments.append(instrument)
99
+
100
+ for pitch, series in enumerate(hand_data):
101
+ start_time = None
102
+ threshold = 0.92 # Threshold for detecting note onset
103
+
104
+ for j in range(len(series) - 1):
105
+ if series[j] < threshold and series[j + 1] >= threshold:
106
+ start_time = j / fs
107
+ elif series[j] >= threshold and series[j + 1] < threshold and start_time is not None:
108
+ end_time = (j + 1) / fs
109
+
110
+ if start_time is not None and end_time is not None:
111
+ note = pm.Note(
112
+ velocity=100,
113
+ pitch=pitch + 24,
114
+ start=start_time,
115
+ end=end_time
116
+ )
117
+ instrument.notes.append(note)
118
+ start_time = None
119
+
120
+ if start_time is not None:
121
+ end_time = len(series) / fs
122
+ note = pm.Note(
123
+ velocity=100,
124
+ pitch=pitch + 24,
125
+ start=start_time,
126
+ end=end_time
127
+ )
128
+ instrument.notes.append(note)
129
+
130
+ return pm_obj
131
+
132
+
133
+ # Function to convert reconstructed data to MIDI files
134
+ def convert_to_midi(right_hand, left_hand, file_name="output.mid", fs=8):
135
+ midi_data = create_midi_from_piano_roll(right_hand, left_hand, fs=fs)
136
+ midi_data.write(file_name)
137
+
138
+ print(f"MIDI file saved to {file_name}")
139
+ return file_name
140
+
141
+
142
+ # Streamlit interface
143
+ st.title("GRU-VAE Reconstruction Demo")
144
+ model = load_model()
145
+
146
+ # File upload
147
+ uploaded_file = st.file_uploader("Upload a MIDI file", type=["mid", "midi"])
148
+
149
+ if uploaded_file is not None:
150
+ st.write("Processing MIDI file...")
151
+ right_hand, left_hand = process_midi(uploaded_file)
152
+
153
+ if right_hand is not None and left_hand is not None:
154
+ # Display original data
155
+ st.write("Original MIDI Data:")
156
+ fig, axs = plt.subplots(1, 2, figsize=(10, 4))
157
+ axs[0].imshow(right_hand, aspect='auto', cmap='gray')
158
+ axs[0].set_title("Right Hand")
159
+ axs[1].imshow(left_hand, aspect='auto', cmap='gray')
160
+ axs[1].set_title("Left Hand")
161
+ st.pyplot(fig)
162
+
163
+ # Reconstruction
164
+ recon_data = reconstruct(right_hand.T, left_hand.T, model)
165
+ recon_right = recon_data[:150].T
166
+ recon_left = recon_data[150:].T
167
+
168
+ # Display reconstructed data
169
+ st.write("Reconstructed MIDI Data:")
170
+ fig, axs = plt.subplots(1, 2, figsize=(10, 4))
171
+ axs[0].imshow(recon_right, aspect='auto', cmap='gray')
172
+ axs[0].set_title("Right Hand (Reconstructed)")
173
+ axs[1].imshow(recon_left, aspect='auto', cmap='gray')
174
+ axs[1].set_title("Left Hand (Reconstructed)")
175
+ st.pyplot(fig)
176
+
177
+ # Convert to MIDI and then to WAV for playback
178
+ original_midi = convert_to_midi(right_hand, left_hand, "original_output.mid", fs=8)
179
+ recon_midi = convert_to_midi(recon_right, recon_left, "reconstructed_output.mid", fs=8)
180
+
181
+ # Save and play audio
182
+ original_wav_path = midi_to_wav(original_midi, "original_output.wav")
183
+ recon_wav_path = midi_to_wav(recon_midi, "reconstructed_output.wav")
184
+
185
+ st.write("Original MIDI Playback:")
186
+ st.audio(original_wav_path, format='audio/wav')
187
+
188
+ st.write("Reconstructed MIDI Playback:")
189
+ st.audio(recon_wav_path, format='audio/wav')
190
 
 
 
model.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4803ba1d3b9c224f953c8ffdcf812cb06d779b1875510dd095b6dba70a89f4d
3
+ size 19734966
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ streamlit==1.16.0
2
+ torch==1.11.0
3
+ pretty_midi
4
+ midi2audio
5
+ scipy
6
+ pydub
vae_model_all.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6dc7a37ff6c61c8df10571a6cc008f5e110c5306526625315f09b4a94bd1fea7
3
+ size 19734966