embedding / app.py
vineet124jig's picture
Update app.py
d6d7069 verified
import gradio as gr
import requests
import json
import os
import time
from collections import defaultdict
BASE_URL = "https://api.jigsawstack.com/v1"
headers = {
"x-api-key": os.getenv("JIGSAWSTACK_API_KEY")
}
# Rate limiting configuration
request_times = defaultdict(list)
MAX_REQUESTS = 20 # Maximum requests per time window
TIME_WINDOW = 3600 # Time window in seconds (1 hour)
def get_real_ip(request: gr.Request):
"""Extract real IP address using x-forwarded-for header or fallback"""
if not request:
return "unknown"
forwarded = request.headers.get("x-forwarded-for")
if forwarded:
ip = forwarded.split(",")[0].strip() # First IP in the list is the client's
else:
ip = request.client.host # fallback
return ip
def check_rate_limit(request: gr.Request):
"""Check if the current request exceeds rate limits"""
if not request:
return True, "Rate limit check failed - no request info"
ip = get_real_ip(request)
now = time.time()
request_times[ip] = [t for t in request_times[ip] if now - t < TIME_WINDOW]
# Check if rate limit exceeded
if len(request_times[ip]) >= MAX_REQUESTS:
time_remaining = int(TIME_WINDOW - (now - request_times[ip][0]))
time_remaining_minutes = round(time_remaining / 60, 1)
time_window_minutes = round(TIME_WINDOW / 60, 1)
return False, f"Rate limit exceeded. You can make {MAX_REQUESTS} requests per {time_window_minutes} minutes. Try again in {time_remaining_minutes} minutes."
# Add current request timestamp
request_times[ip].append(now)
return True, ""
def generate_embedding(input_type, text_content, url, content_type, token_overflow_mode, request: gr.Request):
"""Generate embeddings using JigsawStack Embedding API with rate limiting"""
# Check rate limit first
rate_limit_ok, rate_limit_msg = check_rate_limit(request)
if not rate_limit_ok:
return rate_limit_msg, ""
# Validate inputs
if input_type == "Text" and not text_content:
return "Error: Please provide text content.", ""
if input_type == "URL" and not url:
return "Error: Please provide a URL.", ""
try:
payload = {
"type": content_type,
"token_overflow_mode": token_overflow_mode
}
if input_type == "Text":
payload["text"] = text_content.strip()
elif input_type == "URL":
payload["url"] = url.strip()
response = requests.post(
f"{BASE_URL}/embedding",
headers=headers,
json=payload
)
response.raise_for_status()
result = response.json()
if not result.get("success"):
error_msg = f"Error: API call failed - {result.get('message', 'Unknown error')}"
return error_msg, ""
embedding = result.get("embeddings", [])
embedding_str = json.dumps(embedding, indent=2)
return "Embedding generated successfully!", embedding_str
except requests.exceptions.RequestException as e:
return f"Request failed: {str(e)}", ""
except Exception as e:
return f"An unexpected error occurred: {str(e)}", ""
with gr.Blocks() as demo:
gr.Markdown("""
<div style='text-align: center; margin-bottom: 24px;'>
<h1 style='font-size:2.2em; margin-bottom: 0.2em;'>🧩 Generate vector embeddings</h1>
<p style='font-size:1.2em; margin-top: 0;'>Generate vector embeddings from various content types.</p>
<p style='font-size:1em; margin-top: 0.5em;'>For more details and API usage, see the <a href='https://jigsawstack.com/docs/api-reference/ai/embedding?slug=docs&slug=api-reference&slug=ai&slug=embedding' target='_blank'>documentation</a>.</p>
</div>
""")
with gr.Row():
with gr.Column():
gr.Markdown("#### Content Input")
input_type = gr.Radio([
"Text",
"URL"
], value="Text", label="Select Input Type")
text_content = gr.Textbox(
label="Text Content",
placeholder="Enter the text content to generate embeddings for...",
visible=True,
lines=5
)
url = gr.Textbox(
label="URL",
placeholder="Enter the URL of the resource...",
visible=False
)
content_type = gr.Dropdown(
choices=["text", "text-other", "image", "audio", "pdf"],
value="text",
label="Content Type",
info="Select the type of content being processed"
)
token_overflow_mode = gr.Radio(
choices=["error", "truncate"],
value="error",
label="Token Overflow Mode",
info="How to handle input that exceeds token limits"
)
generate_btn = gr.Button("Generate Embedding", variant="primary")
with gr.Column():
gr.Markdown("#### Embedding Result")
status_message = gr.Textbox(label="Status", interactive=False)
embedding_result = gr.Textbox(
label="Vector Embedding",
interactive=False,
lines=15,
max_lines=25
)
def toggle_inputs(selected):
if selected == "Text":
return gr.update(visible=True), gr.update(visible=False)
else: # URL
return gr.update(visible=False), gr.update(visible=True)
input_type.change(toggle_inputs, inputs=[input_type], outputs=[text_content, url])
generate_btn.click(
generate_embedding,
inputs=[input_type, text_content, url, content_type, token_overflow_mode],
outputs=[status_message, embedding_result]
)
demo.launch()