Math_OCR / app.py
Jiangxz's picture
Upload 2 files
e4ca6c2 verified
raw
history blame
4.42 kB
import os
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"
import io
import pandas as pd
import streamlit as st
from streamlit_drawable_canvas import st_canvas
import hashlib
import pypdfium2
from texify.inference import batch_inference
from texify.model.model import load_model
from texify.model.processor import load_processor
from texify.output import replace_katex_invalid
from PIL import Image
MAX_WIDTH = 800
MAX_HEIGHT = 1000
@st.cache_resource()
def load_model_cached():
return load_model()
@st.cache_resource()
def load_processor_cached():
return load_processor()
@st.cache_data()
def infer_image(pil_image, bbox, temperature):
input_img = pil_image.crop(bbox)
model_output = batch_inference([input_img], model, processor, temperature=temperature)
return model_output[0]
def open_pdf(pdf_file):
stream = io.BytesIO(pdf_file.getvalue())
return pypdfium2.PdfDocument(stream)
@st.cache_data()
def get_page_image(pdf_file, page_num, dpi=96):
doc = open_pdf(pdf_file)
renderer = doc.render(
pypdfium2.PdfBitmap.to_pil,
page_indices=[page_num - 1],
scale=dpi / 72,
)
png = list(renderer)[0]
png_image = png.convert("RGB")
return png_image
@st.cache_data()
def get_uploaded_image(in_file):
return Image.open(in_file).convert("RGB")
def resize_image(pil_image):
if pil_image is None:
return
pil_image.thumbnail((MAX_WIDTH, MAX_HEIGHT), Image.Resampling.LANCZOS)
@st.cache_data()
def page_count(pdf_file):
doc = open_pdf(pdf_file)
return len(doc)
def get_canvas_hash(pil_image):
return hashlib.md5(pil_image.tobytes()).hexdigest()
@st.cache_data()
def get_image_size(pil_image):
if pil_image is None:
return MAX_HEIGHT, MAX_WIDTH
height, width = pil_image.height, pil_image.width
return height, width
st.set_page_config(layout="wide")
top_message = """### LaTeX:Math OCR
上傳圖片或 PDF 檔案後,請通過拖曳畫一個框圈選你想進行 OCR 的方程式,拖曳框圈範圍以框選數學公式範圍即可,框好後即直接開始辨識轉換為 LaTeX 格式,最終辨識結果會顯示在右側邊欄。
"""
st.markdown(top_message)
col1, col2 = st.columns([.7, .3])
model = load_model_cached()
processor = load_processor_cached()
in_file = st.sidebar.file_uploader("上傳圖片或 PDF 檔案:", type=["pdf", "png", "jpg", "jpeg", "gif", "webp"])
if in_file is None:
st.stop()
filetype = in_file.type
whole_image = False
if "pdf" in filetype:
page_count = page_count(in_file)
page_number = st.sidebar.number_input(f"Page number out of {page_count}:", min_value=1, value=1, max_value=page_count)
pil_image = get_page_image(in_file, page_number)
else:
pil_image = get_uploaded_image(in_file)
whole_image = st.sidebar.button("OCR 圖片")
resize_image(pil_image)
temperature = st.sidebar.slider("Temperature:", min_value=0.0, max_value=1.0, value=0.0, step=0.05)
canvas_hash = get_canvas_hash(pil_image) if pil_image else "canvas"
with col1:
canvas_result = st_canvas(
fill_color="rgba(255, 165, 0, 0.1)",
stroke_width=1,
stroke_color="#FFAA00",
background_color="#FFF",
background_image=pil_image,
update_streamlit=True,
height=get_image_size(pil_image)[0],
width=get_image_size(pil_image)[1],
drawing_mode="rect",
point_display_radius=0,
key=canvas_hash,
)
if canvas_result.json_data is not None or whole_image:
objects = pd.json_normalize(canvas_result.json_data["objects"])
bbox_list = None
if objects.shape[0] > 0:
boxes = objects[objects["type"] == "rect"][["left", "top", "width", "height"]]
boxes["right"] = boxes["left"] + boxes["width"]
boxes["bottom"] = boxes["top"] + boxes["height"]
bbox_list = boxes[["left", "top", "right", "bottom"]].values.tolist()
if whole_image:
bbox_list = [(0, 0, pil_image.width, pil_image.height)]
if bbox_list:
with col2:
inferences = [infer_image(pil_image, bbox, temperature) for bbox in bbox_list]
for idx, inference in enumerate(reversed(inferences)):
st.markdown(f"### {len(inferences) - idx}")
katex_markdown = replace_katex_invalid(inference)
st.markdown(katex_markdown)
st.code(inference)
st.divider()