Jiahuita commited on
Commit
4931f6a
·
1 Parent(s): 8f3a7a6

updated readme

Browse files
Files changed (2) hide show
  1. README copy.md +0 -97
  2. README.md +78 -2
README copy.md DELETED
@@ -1,97 +0,0 @@
1
- ---
2
- title: News Source Classifier
3
- emoji: 📰
4
- colorFrom: blue
5
- colorTo: red
6
- sdk: fastapi
7
- sdk_version: 0.95.2
8
- app_file: app.py
9
- pinned: false
10
- language: en
11
- license: mit
12
- tags:
13
- - text-classification
14
- - news-classification
15
- - LSTM
16
- - tensorflow
17
- pipeline_tag: text-classification
18
- widget:
19
- - example_title: "Crime News Headline"
20
- text: "Wife of murdered Minnesota pastor hired 3 men to kill husband after affair: police"
21
- - example_title: "Science News Headline"
22
- text: "Scientists discover breakthrough in renewable energy research"
23
- - example_title: "Political News Headline"
24
- text: "Presidential candidates face off in heated debate over climate policies"
25
- model-index:
26
- - name: News Source Classifier
27
- results:
28
- - task:
29
- type: text-classification
30
- name: Text Classification
31
- dataset:
32
- name: Custom Dataset
33
- type: Custom
34
- metrics:
35
- - name: Accuracy
36
- type: accuracy
37
- value: 0.82
38
- ---
39
-
40
- # News Source Classifier
41
-
42
- This model classifies news headlines as either Fox News or NBC News using an LSTM neural network.
43
-
44
- ## Model Description
45
-
46
- - **Model Architecture**: LSTM Neural Network
47
- - **Input**: News headlines (text)
48
- - **Output**: Binary classification (Fox News vs NBC)
49
- - **Training Data**: Large collection of headlines from both news sources
50
- - **Performance**: Achieves approximately 82% accuracy on the test set
51
-
52
- ## Usage
53
-
54
- You can use this model directly with a FastAPI endpoint:
55
-
56
- ```python
57
- import requests
58
-
59
- response = requests.post(
60
- "https://huggingface.co/Jiahuita/NewsSourceClassification",
61
- json={"text": "Your news headline here"}
62
- )
63
- print(response.json())
64
- ```
65
-
66
- Or use it locally:
67
-
68
- ```python
69
- from transformers import pipeline
70
-
71
- classifier = pipeline("text-classification", model="Jiahuita/NewsSourceClassification")
72
- result = classifier("Your news headline here")
73
- print(result)
74
- ```
75
-
76
- Example response:
77
- ```json
78
- {
79
- "label": "foxnews",
80
- "score": 0.875
81
- }
82
- ```
83
-
84
- ## Limitations and Bias
85
-
86
- This model has been trained on news headlines from specific sources and time periods, which may introduce certain biases. Users should be aware of these limitations when using the model.
87
-
88
- ## Training
89
-
90
- The model was trained using:
91
- - TensorFlow 2.13.0
92
- - LSTM architecture
93
- - Binary cross-entropy loss
94
- - Adam optimizer
95
-
96
- ## License
97
- This project is licensed under the MIT License.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
README.md CHANGED
@@ -1,10 +1,86 @@
1
  ---
2
  title: News Classification
3
- emoji: 😻
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: docker
 
 
7
  pinned: false
 
 
 
 
 
 
 
 
8
  ---
9
 
10
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  title: News Classification
3
+ emoji: 📰
4
  colorFrom: green
5
  colorTo: indigo
6
  sdk: docker
7
+ sdk_version: 0.95.2
8
+ app_file: app.py
9
  pinned: false
10
+ language: en
11
+ license: mit
12
+ tags:
13
+ - text-classification
14
+ - news-classification
15
+ - LSTM
16
+ - tensorflow
17
+ pipeline_tag: text-classification
18
  ---
19
 
20
+ # News Source Classifier
21
+
22
+ This model classifies news headlines as either Fox News or NBC News using a deep learning LSTM (Long Short-Term Memory) neural network architecture.
23
+
24
+ ## Model Description
25
+
26
+ ### Architecture
27
+ - Input Layer: Embedding layer (vocab_size=74,934, embedding_dim=128)
28
+ - LSTM Layer 1: 128 units with return sequences
29
+ - Dropout Layer 1: For regularization
30
+ - LSTM Layer 2: 64 units
31
+ - Dropout Layer 2: For regularization
32
+ - Output Layer: Dense layer with 2 units (binary classification)
33
+
34
+ ### Technical Details
35
+ - Total Parameters: 9,772,676 (37.28 MB)
36
+ - Training Parameters: 9,772,674 (37.28 MB)
37
+ - Input Shape: (41, ) - sequences of length 41
38
+ - Performance: Achieves binary classification of news sources
39
+
40
+ ## Usage
41
+
42
+ You can use this model through our REST API:
43
+
44
+ ```python
45
+ import requests
46
+
47
+ def predict_news_source(text):
48
+ response = requests.post(
49
+ "https://jiahuita-news-classification.hf.space/predict",
50
+ json={"text": text},
51
+ headers={"Content-Type": "application/json"}
52
+ )
53
+ return response.json()
54
+
55
+ # Example usage
56
+ headline = "Scientists discover breakthrough in renewable energy research"
57
+ result = predict_news_source(headline)
58
+ print(result)
59
+ ```
60
+
61
+ Example response:
62
+ ```json
63
+ {
64
+ "label": "nbc",
65
+ "score": 0.789
66
+ }
67
+ ```
68
+
69
+ ## Limitations and Bias
70
+
71
+ This model has been trained on news headlines from specific sources and time periods, which may introduce certain biases:
72
+ - Training data is limited to two news sources
73
+ - Headlines represent a specific time period
74
+ - Model may be sensitive to writing style rather than just content
75
+
76
+ ## Training Details
77
+
78
+ The model was trained using:
79
+ - TensorFlow 2.10.0
80
+ - Binary cross-entropy loss
81
+ - Embedding layer for text representation
82
+ - Dual LSTM layers with dropout for robust feature extraction
83
+ - Dense layer with softmax activation for final classification
84
+
85
+ ## License
86
+ This project is licensed under the MIT License.