Spaces:
Runtime error
Runtime error
import json | |
import gradio as gr | |
from nn_meter import load_latency_predictor | |
cortexA76cpu_predictor = load_latency_predictor("cortexA76cpu_tflite21") | |
adreno640gpu_predictor = load_latency_predictor("adreno640gpu_tflite21") | |
adreno630gpu = load_latency_predictor("adreno630gpu_tflite21") | |
myriadvpu_predictor = load_latency_predictor("myriadvpu_openvino2019r2") | |
predictor_map = { | |
"cortexA76cpu_tflite21": cortexA76cpu_predictor, | |
"adreno640gpu_tflite21": adreno640gpu_predictor, | |
"adreno630gpu_tflite21": adreno630gpu, | |
"myriadvpu_openvino2019r2": myriadvpu_predictor | |
} | |
feature_for_kernel = { | |
# remove the last two float | |
"conv": ["HW", "CIN", "COUT", "KERNEL_SIZE", "STRIDES"], | |
"dwconv": ["HW", "CIN", "COUT", "KERNEL_SIZE", "STRIDES"], | |
"fc": ["CIN", "COUT"], | |
# support up to 4 cin, if less than 4, the latter cin will be set to 0 | |
"concat": ["HW", "CIN1", "CIN2", "CIN3", "CIN4"], | |
# | |
"maxpool": ["HW", "CIN", "COUT", "KERNEL_SIZE", "POOL_STRIDES"], | |
"avgpool": ["HW", "CIN", "COUT", "KERNEL_SIZE", "POOL_STRIDES"], | |
"split": ["HW", "CIN"], | |
"channelshuffle": ["HW", "CIN"], | |
"se": ["HW", "CIN"], | |
"global-avgpool": ["HW", "CIN"], | |
"bnrelu": ["HW", "CIN"], | |
"bn": ["HW", "CIN"], | |
"hswish": ["HW", "CIN"], | |
"relu": ["HW", "CIN"], | |
"addrelu": ["HW", "CIN1", "CIN2"], | |
"add": ["HW", "CIN1", "CIN2"], | |
} | |
def get_type(str): | |
operate_type = str.split("-")[0] | |
if operate_type == 'global' or operate_type == 'gap': | |
operate_type = 'global-avgpool' | |
return operate_type | |
def get_configuration(operate_type, value_arr): | |
feature_arr = feature_for_kernel[operate_type] | |
if operate_type == 'concat': | |
configuration_arr = [] | |
for i in range(len(feature_arr)): | |
if value_arr[i] != 0: | |
configuration_arr.append(feature_arr[i]+"="+str(value_arr[i])) | |
else: | |
break | |
else: | |
configuration_arr = [feature_arr[i]+"="+str(value_arr[i]) for i in range(min(len(feature_arr),len(value_arr)))] | |
return ', '.join(configuration_arr) | |
def data_process(data): | |
new_data = [] | |
for item in data: | |
operate_type = get_type(item[1]) | |
new_item = { | |
"order": item[0], | |
"type": operate_type, | |
"configuration": get_configuration(operate_type, item[2]), | |
"latency": item[3], | |
"name": item[4], | |
} | |
new_data.append(new_item) | |
return new_data | |
def generate_html(hardware, latency, block_detail): | |
data = data_process(block_detail) | |
doc = """<html> | |
<head> | |
<meta http-equiv="content-type" content="text/html; charset=UTF-8" /> | |
<meta name="viewport" content="width=device-width, | |
initial-scale=1.0, maximum-scale=1.0, user-scalable=no" /> | |
<link href="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/css/bootstrap.min.css" rel="stylesheet"> | |
<link href="https://unpkg.com/bootstrap-table@1.20.2/dist/bootstrap-table.min.css" rel="stylesheet"> | |
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.8.3/font/bootstrap-icons.css"> | |
<style> | |
html { | |
font-family: sans-serif; | |
padding: 5px; | |
} | |
body { | |
padding: 10px; | |
font-size: 0.875rem; | |
} | |
#dataviz { | |
width: 100%; | |
height: 300px; | |
position: relative; | |
} | |
#toolbar { | |
margin-top: 10px; | |
margin-bottom: 15px; | |
display: flex; | |
align-items: center; | |
} | |
input[type="number"]:focus-visible { | |
outline: none; | |
} | |
.bootstrap-table .fixed-table-container .fixed-table-body { | |
height: auto; | |
} | |
</style> | |
</head> | |
<body> | |
<h4 style="font-size: 1.5rem">Latency Analysis <i class="bi bi-question-circle" data-bs-container="body" data-bs-toggle="popover" data-bs-placement="right" style="font-size:1.2rem;"></i></h4> | |
<div id="popoverInfo" style="display: none"> | |
The latency results are empowered by Microsoft nn-Meter. For more technical details, please refer to the paper: <a href="https://dl.acm.org/doi/abs/10.1145/3529706.3529712" target="_blank">nn-METER: Towards Accurate Latency Prediction of DNN Inference on Diverse Edge Devices</a>. | |
</div> | |
<div id="toolbar"> | |
<div style="display: flex;align-items: center;"> | |
<span>Group By: </span> | |
<select class="form-select" id="inputGroupBy" style="width: fit-content;margin-left: 5px;"> | |
<option value="type">Operator Type</option> | |
<option value="name">None</option> | |
</select> | |
</div> | |
<div style="margin-left: 45px;margin-top:6px;display: flex;align-items: center;"> | |
<div><label><input type="radio" name="quantity" value="all" class="quantity" checked> Show all</label></div> | |
<div style="margin-left: 10px;"> | |
<label><input type="radio" name="quantity" value="top" class="quantity"> Show top</label> | |
<input type="number" value="10" min="1" style="width: 50px; border: none; | |
border-bottom: 1px #aaa solid;" id="quantityNumber" disabled> | |
</div> | |
</div> | |
</div> | |
<div style="display: flex;"> | |
<div id="dataviz"> </div> | |
</div> | |
<table id="table" data-search="true" data-search-align="left" data-pagination="true" data-page-size="30" data-page-list="[10, 20, 30, 50, 100, all]"> | |
<thead> | |
<tr> | |
<th data-field="order" data-sortable="true">Excution Order</th> | |
<th data-field="type" data-sortable="true">Operator Type</th> | |
<th data-field="configuration">Configuration</th> | |
<th data-field="latency" data-sortable="true">Latency (ms)</th> | |
<th data-field="name" width="20%" data-sortable="true">Detail Operator</th> | |
</tr> | |
</thead> | |
</table> | |
<script src="https://cdn.jsdelivr.net/npm/echarts@5.3.3/dist/echarts.min.js" type="text/javascript"></script> | |
<script src="https://cdn.jsdelivr.net/npm/jquery/dist/jquery.min.js"></script> | |
<script src="https://cdn.jsdelivr.net/npm/bootstrap@5.2.0-beta1/dist/js/bootstrap.bundle.min.js"></script> | |
<script src="https://unpkg.com/bootstrap-table@1.20.2/dist/bootstrap-table.min.js"></script> | |
</body> | |
<script> | |
""" + f"""let rawData = {str(data).replace("'", '"')};""" + """ | |
rawData.forEach(item => { | |
item.name = item.name.split(";").join("; "); | |
item.latency = Number(item.latency) ? Number(item.latency) : item.latency; | |
}) | |
// table | |
let $table = $("#table"); | |
$(function () { | |
$table.bootstrapTable({ data: rawData }) | |
}) | |
// visualization | |
const chartDom = document.getElementById("dataviz"); | |
let myChart = echarts.init(chartDom); | |
Array.prototype.groupBy = function (key) { | |
return this.reduce(function (rv, x) { | |
(rv[x[key]] = rv[x[key]] || []).push(x); | |
return rv; | |
}, {}); | |
}; | |
function processData(rawData, groupBy, quantity) { | |
// transform data | |
let seriesData = Object.entries(rawData.groupBy(groupBy)).map(([name, arr]) => { | |
const value = arr.reduce((sum, curr) => sum + curr.latency, 0); | |
const type = arr[0].type; | |
return { name, value, type } | |
}) | |
.sort((a, b) => { | |
return b.value - a.value | |
}); | |
if (quantity) { | |
seriesData = seriesData.slice(0, quantity); | |
} | |
return { | |
seriesData, | |
legendData: seriesData.filter(d => Number(d.value)).map(d => d.name) | |
}; | |
} | |
function formatNumber(num, fixed = 2){ | |
if(Number(num.toFixed(fixed)) > 0){ | |
return num.toFixed(fixed); | |
}else{ | |
return num.toPrecision(1); | |
} | |
} | |
function render(data, groupBy) { | |
const sum = data.seriesData.reduce(function (prev, current) { | |
return prev + (Number(current.value) ? Number(current.value) : 0) | |
}, 0); | |
let option = { | |
title: { | |
text: """ + f"""`Total latency is {format(latency, '.4f')}(ms)`, | |
subtext: `on Hardware {hardware}`,"""+""" | |
left: "left", | |
textStyle:{ | |
fontSize: 14 | |
} | |
}, | |
tooltip: { | |
trigger: "item", | |
formatter: (params) => groupBy==="name"? `<i>type:</i> ${params.data.type}<br><i>detail:</i> ${params.data.name}<br><b>${formatNumber(params.data.value)}</b><br><b>(${formatNumber(params.data.value / sum * 100)}%)</b>` : `${params.data.name}<br><b>${formatNumber(params.data.value)}</b><br><b>(${formatNumber(params.data.value / sum * 100)}%)</b>`, | |
extraCssText: "max-width: 400px; white-space: break-spaces;" | |
}, | |
legend: { | |
type: "scroll", | |
orient: "vertical", | |
right: "10%", | |
top: "12%", | |
bottom: "12%", | |
data: data.legendData, | |
formatter: (name) => { | |
let arr = name.split(";"); | |
return arr.length === 1 ? name : (arr[0]+"..."); | |
}, | |
tooltip: { | |
show: true, | |
formatter: (params) => { | |
let datum = data.seriesData.find(d => d.name === params.name); | |
return groupBy==="name"? `<i>type:</i> ${datum.type}<br><i>detail:</i> ${datum.name}<br><b>${formatNumber(datum.value)}</b><br><b>(${formatNumber(datum.value / sum * 100)}%)</b>` :`${datum.name}<br><b>${formatNumber(datum.value)}</b><br><b>(${formatNumber(datum.value / sum * 100)}%)</b>` | |
}, | |
position: (point, params, dom, rect, { contentSize, viewSize }) => [viewSize[0] * 0.4 - contentSize[0] * 0.5, viewSize[1] * 0.5 - contentSize[1] * 0.5] | |
} | |
}, | |
series: [ | |
{ | |
type: "pie", | |
radius: ["40%", "75%"], | |
center: ["40%", "50%"], | |
data: data.seriesData, | |
emphasis: { | |
itemStyle: { | |
shadowBlur: 10, | |
shadowOffsetX: 0, | |
shadowColor: "rgba(0, 0, 0, 0.5)" | |
} | |
}, label: { | |
formatter: "{d}%", | |
position: "inside", | |
color: "#fff", | |
}, | |
} | |
], | |
color: ["#4e79a7", "#f28e2c", "#e15759", "#76b7b2", "#59a14f", "#edc949", "#af7aa1", "#ff9da7", "#9c755f", "#bab0ab"] | |
}; | |
myChart.dispose(); | |
myChart = echarts.init(chartDom); | |
myChart.setOption(option); | |
myChart.on("selectchanged", function(params){ | |
const index = params.fromActionPayload.dataIndexInside; | |
const text = data.seriesData[index].name; | |
$table.bootstrapTable("resetSearch", text); | |
}); | |
myChart.on("legendselectchanged", function(params) { | |
suppressSelection(myChart, params); | |
}); | |
function suppressSelection(chart, params) { | |
chart.setOption({ animation: false }); | |
// Re-select what the user unselected | |
chart.dispatchAction({ | |
type: "legendSelect", | |
name: params.name | |
}); | |
chart.setOption({ animation: true }); | |
} | |
} | |
// config | |
let groupBy = "type"; | |
let quantityNumber = 10; | |
let showAll = true; | |
render(processData(rawData, groupBy), groupBy); | |
function redraw() { | |
render(processData(rawData, groupBy, showAll ? null : quantityNumber), groupBy); | |
} | |
// change groupby | |
document.getElementById("inputGroupBy") | |
.addEventListener("change", function () { | |
groupBy = this.value; | |
redraw(); | |
}); | |
// change the model of show | |
function changeShowModel() { | |
if (this.value === "top") { | |
document.getElementById("quantityNumber").disabled = false; | |
showAll = false; | |
} else { | |
document.getElementById("quantityNumber").disabled = true; | |
showAll = true; | |
} | |
redraw(); | |
} | |
let items = Object.values(document.getElementsByClassName("quantity")) | |
.forEach(item => item.addEventListener("change", changeShowModel)); | |
// change the number of show | |
document.getElementById("quantityNumber") | |
.addEventListener("change", function () { | |
quantityNumber = this.value; | |
redraw(); | |
}) | |
// enable popover | |
const popoverTriggerList = document.querySelectorAll(`[data-bs-toggle="popover"]`) | |
const popoverList = [...popoverTriggerList].map(popoverTriggerEl => new bootstrap.Popover(popoverTriggerEl, { | |
html : true, | |
content: function() { | |
return $("#popoverInfo").html(); | |
} | |
})); | |
</script> | |
</html> | |
""" | |
return f"""<iframe style="width: 100%; height: 480px" name="result" allow="midi; geolocation; microphone; camera; display-capture; encrypted-media;" sandbox="allow-modals allow-forms allow-scripts allow-same-origin allow-popups allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" allowpaymentrequest="" frameborder="0" srcdoc='{doc}'></iframe>""" | |
def generate_error_html(massage): | |
return f"""<div style="color:#842029;background: #f8d7da;padding: 10px;border-radius: 10px; margin-top: 15px;"><b>nn-meter meets an error in latency prediction</b>: {massage}</div> | |
<div style="padding: 10px;">If you have any questions about the result, you can open new issues in <a href="https://github.com/microsoft/nn-Meter" target="_blank" style="color:#2563eb">nn-meter Git repository</a>.</div> | |
""" | |
def get_latency(model, hardware_name): | |
if model == None: | |
return generate_error_html("Please upload a model file or select one example below.") | |
model = model.name | |
if hardware_name == '': | |
return generate_error_html("Please select a device.") | |
predictor = predictor_map[hardware_name] | |
if model.endswith("onnx"): | |
model_type = "onnx" | |
elif model.endswith("pb"): | |
model_type = "pb" | |
else: | |
model_type = "nnmeter-ir" | |
try: | |
model_latency, block_detail = predictor.detailed_predict(model, model_type) | |
return generate_html(hardware_name, model_latency, block_detail) | |
except Exception as e: | |
return generate_error_html(repr(e)) | |
title = "Interactive demo: nn-Meter (Draft Version)" | |
description = "Demo for Microsoft's nn-Meter, a novel and efficient system to accurately predict the inference latency of DNN models on diverse edge devices. To use it, simply upload a model file, or use one of the example below and click ‘submit’. Results will show up in a few seconds." | |
article = "<p style='text-align: center'><a href='https://dl.acm.org/doi/10.1145/3458864.3467882'>nn-Meter: towards accurate latency prediction of deep-learning model inference on diverse edge devices</a> | <a href='https://github.com/microsoft/nn-Meter'>Github Repo</a></p>" | |
examples =[ | |
["samples/mobilenetv3small_0.pb", "cortexA76cpu_tflite21"], | |
["samples/mobilenetv3small_0.onnx", "adreno640gpu_tflite21"], | |
["samples/mobilenetv3small_0.json", "adreno630gpu_tflite21"] | |
] | |
inputs = [ | |
gr.inputs.File(label="Model File"), | |
gr.inputs.Radio(choices=["cortexA76cpu_tflite21", "adreno640gpu_tflite21", "adreno630gpu_tflite21", "myriadvpu_openvino2019r2"], label="Device"), | |
] | |
outputs = gr.outputs.HTML() | |
iface = gr.Interface(fn=get_latency, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
description=description, | |
article=article, | |
examples=examples, | |
allow_flagging="auto", | |
css=""" | |
div[id="6"] { | |
flex-direction: column; | |
} | |
div[id="12"] { | |
margin-left: 0px !important; | |
margin-top: 0.75em !important; | |
} | |
div[id="12"] iframe{ | |
height: 80vh !important; | |
} | |
""") | |
iface.launch() | |