Spaces:
Runtime error
Runtime error
Petr Tsvetkov
commited on
Commit
Β·
f5faae7
1
Parent(s):
6676c5a
Add edit distance and edit time metrics; add GPT-based metric
Browse files- api_wrappers/grazie_wrapper.py +34 -2
- api_wrappers/hf_data_loader.py +34 -1
- config.py +2 -0
- custom_metrics/gpt_eval.py +30 -23
- generation_steps/metrics_analysis.py +65 -31
- generation_steps/synthetic_end_to_start.py +10 -3
- generation_steps/synthetic_start_to_end.py +2 -2
- generate_synthetic_dataset.py β run_pipeline.py +0 -0
api_wrappers/grazie_wrapper.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
|
|
| 1 |
import time
|
| 2 |
|
| 3 |
from grazie.api.client.chat.prompt import ChatPrompt
|
|
@@ -14,8 +15,19 @@ client = GrazieApiGatewayClient(
|
|
| 14 |
grazie_jwt_token=config.GRAZIE_API_JWT_TOKEN
|
| 15 |
)
|
| 16 |
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
output = None
|
| 20 |
|
| 21 |
while output is None:
|
|
@@ -24,7 +36,7 @@ def generate_for_prompt(prompt):
|
|
| 24 |
chat=ChatPrompt()
|
| 25 |
.add_system("You are a helpful assistant.")
|
| 26 |
.add_user(prompt),
|
| 27 |
-
profile=LLMProfile(
|
| 28 |
).content
|
| 29 |
except:
|
| 30 |
time.sleep(config.GRAZIE_TIMEOUT_SEC)
|
|
@@ -32,3 +44,23 @@ def generate_for_prompt(prompt):
|
|
| 32 |
assert output is not None
|
| 33 |
|
| 34 |
return output
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import pickle
|
| 2 |
import time
|
| 3 |
|
| 4 |
from grazie.api.client.chat.prompt import ChatPrompt
|
|
|
|
| 15 |
grazie_jwt_token=config.GRAZIE_API_JWT_TOKEN
|
| 16 |
)
|
| 17 |
|
| 18 |
+
LLM_CACHE_FILE = config.CACHE_DIR / f"{config.LLM_MODEL}.cache.pkl"
|
| 19 |
+
LLM_CACHE = {}
|
| 20 |
+
LLM_CACHE_USED = {}
|
| 21 |
|
| 22 |
+
if not LLM_CACHE_FILE.exists():
|
| 23 |
+
with open(LLM_CACHE_FILE, "wb") as file:
|
| 24 |
+
pickle.dump(obj=LLM_CACHE, file=file)
|
| 25 |
+
|
| 26 |
+
with open(LLM_CACHE_FILE, "rb") as file:
|
| 27 |
+
LLM_CACHE = pickle.load(file=file)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
def llm_request(prompt):
|
| 31 |
output = None
|
| 32 |
|
| 33 |
while output is None:
|
|
|
|
| 36 |
chat=ChatPrompt()
|
| 37 |
.add_system("You are a helpful assistant.")
|
| 38 |
.add_user(prompt),
|
| 39 |
+
profile=LLMProfile(config.LLM_MODEL)
|
| 40 |
).content
|
| 41 |
except:
|
| 42 |
time.sleep(config.GRAZIE_TIMEOUT_SEC)
|
|
|
|
| 44 |
assert output is not None
|
| 45 |
|
| 46 |
return output
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def generate_for_prompt(prompt):
|
| 50 |
+
if prompt not in LLM_CACHE:
|
| 51 |
+
LLM_CACHE[prompt] = []
|
| 52 |
+
|
| 53 |
+
if prompt not in LLM_CACHE_USED:
|
| 54 |
+
LLM_CACHE_USED[prompt] = 0
|
| 55 |
+
|
| 56 |
+
while LLM_CACHE_USED[prompt] >= len(LLM_CACHE[prompt]):
|
| 57 |
+
new_response = llm_request(prompt)
|
| 58 |
+
LLM_CACHE[prompt].append(new_response)
|
| 59 |
+
|
| 60 |
+
with open(LLM_CACHE_FILE, "wb") as file:
|
| 61 |
+
pickle.dump(obj=LLM_CACHE, file=file)
|
| 62 |
+
|
| 63 |
+
result = LLM_CACHE[prompt][LLM_CACHE_USED[prompt]]
|
| 64 |
+
LLM_CACHE_USED[prompt] += 1
|
| 65 |
+
|
| 66 |
+
return result
|
api_wrappers/hf_data_loader.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from datasets import load_dataset
|
| 2 |
|
| 3 |
import config
|
|
@@ -18,9 +21,39 @@ def load_full_commit_as_pandas():
|
|
| 18 |
columns={'message': 'reference'})
|
| 19 |
|
| 20 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
def load_processed_rewriting_as_pandas():
|
| 22 |
manual_rewriting = load_raw_rewriting_as_pandas()[
|
| 23 |
-
["hash", "repo", "commit_msg_start", "commit_msg_end", "session"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
manual_rewriting.set_index(["hash", "repo"], inplace=True)
|
| 25 |
|
| 26 |
mods_dataset = load_full_commit_as_pandas()[["hash", "repo", "mods"]]
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
from datetime import datetime, timedelta
|
| 3 |
+
|
| 4 |
from datasets import load_dataset
|
| 5 |
|
| 6 |
import config
|
|
|
|
| 21 |
columns={'message': 'reference'})
|
| 22 |
|
| 23 |
|
| 24 |
+
def edit_time_from_history(history_str):
|
| 25 |
+
history = json.loads(history_str)
|
| 26 |
+
|
| 27 |
+
if len(history) == 0:
|
| 28 |
+
return 0
|
| 29 |
+
|
| 30 |
+
timestamps = list(map(lambda e: datetime.fromisoformat(e['ts']), history))
|
| 31 |
+
delta = (max(timestamps) - min(timestamps))
|
| 32 |
+
|
| 33 |
+
return delta // timedelta(milliseconds=1)
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
def edit_time_from_timestamps(row):
|
| 37 |
+
loaded_ts = datetime.fromisoformat(row['loaded_ts'])
|
| 38 |
+
submitted_ts = datetime.fromisoformat(row['submitted_ts'])
|
| 39 |
+
|
| 40 |
+
delta = submitted_ts - loaded_ts
|
| 41 |
+
|
| 42 |
+
result = delta // timedelta(milliseconds=1)
|
| 43 |
+
|
| 44 |
+
return result if result >= 0 else None
|
| 45 |
+
|
| 46 |
+
|
| 47 |
def load_processed_rewriting_as_pandas():
|
| 48 |
manual_rewriting = load_raw_rewriting_as_pandas()[
|
| 49 |
+
["hash", "repo", "commit_msg_start", "commit_msg_end", "session", "commit_msg_history", "loaded_ts",
|
| 50 |
+
"submitted_ts"]]
|
| 51 |
+
|
| 52 |
+
manual_rewriting['edit_time_hist'] = manual_rewriting['commit_msg_history'].apply(edit_time_from_history)
|
| 53 |
+
manual_rewriting['edit_time'] = manual_rewriting.apply(edit_time_from_timestamps, axis=1)
|
| 54 |
+
|
| 55 |
+
manual_rewriting.drop(columns=['commit_msg_history', "loaded_ts", "submitted_ts"])
|
| 56 |
+
|
| 57 |
manual_rewriting.set_index(["hash", "repo"], inplace=True)
|
| 58 |
|
| 59 |
mods_dataset = load_full_commit_as_pandas()[["hash", "repo", "mods"]]
|
config.py
CHANGED
|
@@ -22,6 +22,8 @@ HF_PREDICTIONS_DATASET_SPLIT = "test"
|
|
| 22 |
HF_SYNTHETIC_DATASET_NAME = "petrtsv-jb/synthetic-commit-msg-rewriting"
|
| 23 |
HF_SYNTHETIC_DATASET_SPLIT = 'train'
|
| 24 |
|
|
|
|
|
|
|
| 25 |
CACHE_DIR = Path("cache")
|
| 26 |
CACHE_DIR.mkdir(exist_ok=True)
|
| 27 |
|
|
|
|
| 22 |
HF_SYNTHETIC_DATASET_NAME = "petrtsv-jb/synthetic-commit-msg-rewriting"
|
| 23 |
HF_SYNTHETIC_DATASET_SPLIT = 'train'
|
| 24 |
|
| 25 |
+
LLM_MODEL = "gpt-4-1106-preview"
|
| 26 |
+
|
| 27 |
CACHE_DIR = Path("cache")
|
| 28 |
CACHE_DIR.mkdir(exist_ok=True)
|
| 29 |
|
custom_metrics/gpt_eval.py
CHANGED
|
@@ -1,46 +1,53 @@
|
|
| 1 |
-
import time
|
| 2 |
-
|
| 3 |
from api_wrappers import grazie_wrapper
|
| 4 |
|
| 5 |
|
| 6 |
-
def
|
| 7 |
-
return f"""
|
| 8 |
-
|
| 9 |
-
A good commit message has to be concise.
|
| 10 |
-
Assign lower scores for the commit messages that are too verbose for a commit message.
|
| 11 |
|
| 12 |
-
|
| 13 |
-
START OF THE GENERATED COMMIT MESSAGE
|
| 14 |
{prediction}
|
| 15 |
-
END OF THE
|
| 16 |
|
| 17 |
-
|
| 18 |
-
|
|
|
|
| 19 |
{reference}
|
| 20 |
END OF THE REFERENCE COMMIT MESSAGE
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
Print only one integer number after the token "OUTPUT" - the rating of the generated commit message.
|
| 25 |
-
Do not print anything that is not an integer.
|
| 26 |
-
|
| 27 |
-
OUTPUT
|
| 28 |
"""
|
| 29 |
|
| 30 |
|
| 31 |
N_RETRIES = 3
|
| 32 |
|
| 33 |
|
| 34 |
-
def
|
| 35 |
-
prompt = build_prompt(prediction, reference)
|
| 36 |
outputs = []
|
|
|
|
| 37 |
|
| 38 |
for i in range(N_RETRIES):
|
| 39 |
try:
|
| 40 |
-
output = grazie_wrapper.generate_for_prompt(prompt).strip()[-1]
|
| 41 |
outputs.append(output)
|
| 42 |
-
|
|
|
|
|
|
|
| 43 |
except ValueError:
|
| 44 |
continue
|
| 45 |
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from api_wrappers import grazie_wrapper
|
| 2 |
|
| 3 |
|
| 4 |
+
def build_prompt_ref(prediction, reference):
|
| 5 |
+
return f"""Evaluate the following commit message based on clarity, specificity, context, and conciseness without
|
| 6 |
+
providing any additional feedback or commentary:
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
START OF THE COMMIT MESSAGE YOU HAVE TO EVALUATE
|
|
|
|
| 9 |
{prediction}
|
| 10 |
+
END OF THE COMMIT MESSAGE YOU HAVE TO EVALUATE
|
| 11 |
|
| 12 |
+
For reference, consider this as an example of a good commit message for the same commit that is both concise and
|
| 13 |
+
specific:
|
| 14 |
+
START OF THE REFERENCE COMMIT MESSAGE
|
| 15 |
{reference}
|
| 16 |
END OF THE REFERENCE COMMIT MESSAGE
|
| 17 |
|
| 18 |
+
YOUR TASK: Provide a single number as a response, representing the rating on a scale from 1 to 10, where 1 is the
|
| 19 |
+
lowest quality and 10 is the highest quality. Do not include any other text or explanation in your response.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"""
|
| 21 |
|
| 22 |
|
| 23 |
N_RETRIES = 3
|
| 24 |
|
| 25 |
|
| 26 |
+
def get_number_for_prompt(prompt):
|
|
|
|
| 27 |
outputs = []
|
| 28 |
+
result = None
|
| 29 |
|
| 30 |
for i in range(N_RETRIES):
|
| 31 |
try:
|
| 32 |
+
output = grazie_wrapper.generate_for_prompt(prompt).strip().split()[-1]
|
| 33 |
outputs.append(output)
|
| 34 |
+
|
| 35 |
+
result = int(output)
|
| 36 |
+
break
|
| 37 |
except ValueError:
|
| 38 |
continue
|
| 39 |
|
| 40 |
+
if result is None:
|
| 41 |
+
raise RuntimeError(f"LLM cannot generate a number. Its outputs were: {str(outputs)}")
|
| 42 |
+
|
| 43 |
+
return result
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
def compute_ref(prediction, reference, n_requests):
|
| 47 |
+
prompt = build_prompt_ref(prediction, reference)
|
| 48 |
+
results = [
|
| 49 |
+
get_number_for_prompt(prompt)
|
| 50 |
+
for _ in range(n_requests)
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
+
return sum(results) / len(results)
|
generation_steps/metrics_analysis.py
CHANGED
|
@@ -1,6 +1,7 @@
|
|
| 1 |
import functools
|
| 2 |
import operator
|
| 3 |
|
|
|
|
| 4 |
import evaluate
|
| 5 |
import pandas as pd
|
| 6 |
from tqdm import tqdm
|
|
@@ -12,59 +13,78 @@ from custom_metrics import gpt_eval
|
|
| 12 |
BLEU = evaluate.load('bleu', cache_dir=config.CACHE_DIR)
|
| 13 |
|
| 14 |
|
| 15 |
-
def bleu_fn(pred, ref):
|
| 16 |
return BLEU.compute(predictions=[pred], references=[ref])["bleu"]
|
| 17 |
|
| 18 |
|
| 19 |
METEOR = evaluate.load('meteor', cache_dir=config.CACHE_DIR)
|
| 20 |
|
| 21 |
|
| 22 |
-
def meteor_fn(pred, ref):
|
| 23 |
return METEOR.compute(predictions=[pred], references=[ref])["meteor"]
|
| 24 |
|
| 25 |
|
| 26 |
ROUGE = evaluate.load('rouge', cache_dir=config.CACHE_DIR)
|
| 27 |
|
| 28 |
|
| 29 |
-
def rouge1_fn(pred, ref):
|
| 30 |
return ROUGE.compute(predictions=[pred], references=[ref])["rouge1"]
|
| 31 |
|
| 32 |
|
| 33 |
-
def rouge2_fn(pred, ref):
|
| 34 |
return ROUGE.compute(predictions=[pred], references=[ref])["rouge2"]
|
| 35 |
|
| 36 |
|
| 37 |
-
def rougeL_fn(pred, ref):
|
| 38 |
return ROUGE.compute(predictions=[pred], references=[ref])["rougeL"]
|
| 39 |
|
| 40 |
|
| 41 |
BERTSCORE = evaluate.load('bertscore', cache_dir=config.CACHE_DIR)
|
| 42 |
|
| 43 |
|
| 44 |
-
def bertscore_fn(pred, ref):
|
| 45 |
return BERTSCORE.compute(predictions=[pred], references=[ref], model_type="distilbert-base-uncased")["f1"][0]
|
| 46 |
|
| 47 |
|
| 48 |
-
def gptscore_fn(pred, ref):
|
| 49 |
-
return gpt_eval.compute(prediction=pred, reference=ref)
|
| 50 |
-
|
| 51 |
-
|
| 52 |
CHRF = evaluate.load("chrf")
|
| 53 |
|
| 54 |
|
| 55 |
-
def chrf_fn(pred, ref):
|
| 56 |
return CHRF.compute(predictions=[pred], references=[[ref]])["score"]
|
| 57 |
|
| 58 |
|
| 59 |
TER = evaluate.load("ter")
|
| 60 |
|
| 61 |
|
| 62 |
-
def ter_fn(pred, ref):
|
| 63 |
return TER.compute(predictions=[pred], references=[[ref]])["score"]
|
| 64 |
|
| 65 |
|
| 66 |
-
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
"bleu": bleu_fn,
|
| 69 |
"meteor": meteor_fn,
|
| 70 |
"rouge1": rouge1_fn,
|
|
@@ -72,7 +92,12 @@ METRICS = {
|
|
| 72 |
"rougeL": rougeL_fn,
|
| 73 |
"bertscore": bertscore_fn,
|
| 74 |
"chrF": chrf_fn,
|
| 75 |
-
"ter": ter_fn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
}
|
| 77 |
|
| 78 |
|
|
@@ -86,11 +111,11 @@ def compute_metrics(df):
|
|
| 86 |
tqdm.pandas()
|
| 87 |
|
| 88 |
def apply_metric_fn_to_row(row, fn, col_pred, col_ref):
|
| 89 |
-
return fn(row[col_pred], row[col_ref])
|
| 90 |
|
| 91 |
-
for metric in
|
| 92 |
-
print(f"Computing {metric}")
|
| 93 |
-
metric_fn =
|
| 94 |
df[f"{metric}_related"] = df.progress_apply(
|
| 95 |
lambda row: apply_metric_fn_to_row(row=row,
|
| 96 |
fn=metric_fn,
|
|
@@ -98,6 +123,10 @@ def compute_metrics(df):
|
|
| 98 |
col_ref="commit_msg_end"),
|
| 99 |
axis=1
|
| 100 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
df[f"{metric}_independent"] = df.progress_apply(
|
| 102 |
lambda row: apply_metric_fn_to_row(row=row,
|
| 103 |
fn=metric_fn,
|
|
@@ -106,25 +135,30 @@ def compute_metrics(df):
|
|
| 106 |
axis=1
|
| 107 |
)
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
return df
|
| 113 |
|
| 114 |
|
| 115 |
def correlations_for_group(group):
|
| 116 |
correlations = []
|
| 117 |
-
for
|
| 118 |
-
correlations.append({
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
})
|
| 122 |
-
for
|
| 123 |
correlations.append({
|
| 124 |
-
f"
|
| 125 |
-
group[f"{
|
| 126 |
-
f"
|
| 127 |
-
group[f"{
|
| 128 |
})
|
| 129 |
return pd.Series(functools.reduce(operator.ior, correlations, {}))
|
| 130 |
|
|
|
|
| 1 |
import functools
|
| 2 |
import operator
|
| 3 |
|
| 4 |
+
import Levenshtein
|
| 5 |
import evaluate
|
| 6 |
import pandas as pd
|
| 7 |
from tqdm import tqdm
|
|
|
|
| 13 |
BLEU = evaluate.load('bleu', cache_dir=config.CACHE_DIR)
|
| 14 |
|
| 15 |
|
| 16 |
+
def bleu_fn(pred, ref, **kwargs):
|
| 17 |
return BLEU.compute(predictions=[pred], references=[ref])["bleu"]
|
| 18 |
|
| 19 |
|
| 20 |
METEOR = evaluate.load('meteor', cache_dir=config.CACHE_DIR)
|
| 21 |
|
| 22 |
|
| 23 |
+
def meteor_fn(pred, ref, **kwargs):
|
| 24 |
return METEOR.compute(predictions=[pred], references=[ref])["meteor"]
|
| 25 |
|
| 26 |
|
| 27 |
ROUGE = evaluate.load('rouge', cache_dir=config.CACHE_DIR)
|
| 28 |
|
| 29 |
|
| 30 |
+
def rouge1_fn(pred, ref, **kwargs):
|
| 31 |
return ROUGE.compute(predictions=[pred], references=[ref])["rouge1"]
|
| 32 |
|
| 33 |
|
| 34 |
+
def rouge2_fn(pred, ref, **kwargs):
|
| 35 |
return ROUGE.compute(predictions=[pred], references=[ref])["rouge2"]
|
| 36 |
|
| 37 |
|
| 38 |
+
def rougeL_fn(pred, ref, **kwargs):
|
| 39 |
return ROUGE.compute(predictions=[pred], references=[ref])["rougeL"]
|
| 40 |
|
| 41 |
|
| 42 |
BERTSCORE = evaluate.load('bertscore', cache_dir=config.CACHE_DIR)
|
| 43 |
|
| 44 |
|
| 45 |
+
def bertscore_fn(pred, ref, **kwargs):
|
| 46 |
return BERTSCORE.compute(predictions=[pred], references=[ref], model_type="distilbert-base-uncased")["f1"][0]
|
| 47 |
|
| 48 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
CHRF = evaluate.load("chrf")
|
| 50 |
|
| 51 |
|
| 52 |
+
def chrf_fn(pred, ref, **kwargs):
|
| 53 |
return CHRF.compute(predictions=[pred], references=[[ref]])["score"]
|
| 54 |
|
| 55 |
|
| 56 |
TER = evaluate.load("ter")
|
| 57 |
|
| 58 |
|
| 59 |
+
def ter_fn(pred, ref, **kwargs):
|
| 60 |
return TER.compute(predictions=[pred], references=[[ref]])["score"]
|
| 61 |
|
| 62 |
|
| 63 |
+
def edit_distance_fn(pred, ref, **kwargs):
|
| 64 |
+
return Levenshtein.distance(pred, ref)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
def edit_time_fn(pred, ref, **kwargs):
|
| 68 |
+
return kwargs["edittime"]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def gptscore_ref_1_fn(pred, ref, **kwargs):
|
| 72 |
+
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=1)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def gptscore_ref_3_fn(pred, ref, **kwargs):
|
| 76 |
+
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=3)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def gptscore_ref_5_fn(pred, ref, **kwargs):
|
| 80 |
+
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=5)
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
IND_METRICS = {
|
| 84 |
+
"gptscore-ref-1-req": gptscore_ref_1_fn,
|
| 85 |
+
"gptscore-ref-3-req": gptscore_ref_3_fn,
|
| 86 |
+
# "gptscore-ref-5-req": gptscore_ref_5_fn,
|
| 87 |
+
"editdist": edit_distance_fn,
|
| 88 |
"bleu": bleu_fn,
|
| 89 |
"meteor": meteor_fn,
|
| 90 |
"rouge1": rouge1_fn,
|
|
|
|
| 92 |
"rougeL": rougeL_fn,
|
| 93 |
"bertscore": bertscore_fn,
|
| 94 |
"chrF": chrf_fn,
|
| 95 |
+
"ter": ter_fn,
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
REL_METRICS = {
|
| 99 |
+
"editdist": edit_distance_fn,
|
| 100 |
+
"edittime": edit_time_fn,
|
| 101 |
}
|
| 102 |
|
| 103 |
|
|
|
|
| 111 |
tqdm.pandas()
|
| 112 |
|
| 113 |
def apply_metric_fn_to_row(row, fn, col_pred, col_ref):
|
| 114 |
+
return fn(row[col_pred], row[col_ref], edittime=row['edit_time'])
|
| 115 |
|
| 116 |
+
for metric in REL_METRICS:
|
| 117 |
+
print(f"Computing {metric} for the related pairs")
|
| 118 |
+
metric_fn = REL_METRICS[metric]
|
| 119 |
df[f"{metric}_related"] = df.progress_apply(
|
| 120 |
lambda row: apply_metric_fn_to_row(row=row,
|
| 121 |
fn=metric_fn,
|
|
|
|
| 123 |
col_ref="commit_msg_end"),
|
| 124 |
axis=1
|
| 125 |
)
|
| 126 |
+
|
| 127 |
+
for metric in IND_METRICS:
|
| 128 |
+
print(f"Computing {metric} for the independent pairs")
|
| 129 |
+
metric_fn = IND_METRICS[metric]
|
| 130 |
df[f"{metric}_independent"] = df.progress_apply(
|
| 131 |
lambda row: apply_metric_fn_to_row(row=row,
|
| 132 |
fn=metric_fn,
|
|
|
|
| 135 |
axis=1
|
| 136 |
)
|
| 137 |
|
| 138 |
+
for rel_metric in REL_METRICS:
|
| 139 |
+
for ind_metric in IND_METRICS:
|
| 140 |
+
df[f"rel_{rel_metric}_ind_{ind_metric}_pearson"] = (
|
| 141 |
+
df[f"{rel_metric}_related"].corr(df[f"{ind_metric}_independent"], method="pearson"))
|
| 142 |
+
|
| 143 |
+
df[f"rel_{rel_metric}_ind_{ind_metric}_spearman"] = (
|
| 144 |
+
df[f"{rel_metric}_related"].corr(df[f"{ind_metric}_independent"], method="spearman"))
|
| 145 |
|
| 146 |
return df
|
| 147 |
|
| 148 |
|
| 149 |
def correlations_for_group(group):
|
| 150 |
correlations = []
|
| 151 |
+
for rel_metric in REL_METRICS:
|
| 152 |
+
# correlations.append({
|
| 153 |
+
# f"{metric}_pearson": group[f"{metric}_related"].corr(group[f"{metric}_independent"], method="pearson"),
|
| 154 |
+
# f"{metric}_spearman": group[f"{metric}_related"].corr(group[f"{metric}_independent"], method="spearman")
|
| 155 |
+
# })
|
| 156 |
+
for ind_metric in IND_METRICS:
|
| 157 |
correlations.append({
|
| 158 |
+
f"rel_{rel_metric}_ind_{ind_metric}_pearson": group[f"{rel_metric}_related"].corr(
|
| 159 |
+
group[f"{ind_metric}_independent"], method="pearson"),
|
| 160 |
+
f"rel_{rel_metric}_ind_{ind_metric}_spearman": group[f"{rel_metric}_related"].corr(
|
| 161 |
+
group[f"{ind_metric}_independent"], method="spearman"),
|
| 162 |
})
|
| 163 |
return pd.Series(functools.reduce(operator.ior, correlations, {}))
|
| 164 |
|
generation_steps/synthetic_end_to_start.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
from tqdm import tqdm
|
| 3 |
|
|
@@ -7,9 +9,9 @@ import statistics
|
|
| 7 |
from api_wrappers import grazie_wrapper, hf_data_loader
|
| 8 |
from generation_steps import examples
|
| 9 |
|
| 10 |
-
GENERATION_MULTIPLIER =
|
| 11 |
REL_INSERTIONS_THRESHOLD = 0.5
|
| 12 |
-
GENERATION_ATTEMPTS =
|
| 13 |
|
| 14 |
|
| 15 |
def build_prompt(reference, diff):
|
|
@@ -61,6 +63,8 @@ def generate_start_msg(end_msg, diff):
|
|
| 61 |
|
| 62 |
COLS_TO_KEEP = ["hash", "repo", "commit_msg_end", "mods", "session"]
|
| 63 |
|
|
|
|
|
|
|
| 64 |
|
| 65 |
def transform(df):
|
| 66 |
print(f"End -> start synthesis:")
|
|
@@ -75,7 +79,7 @@ def transform(df):
|
|
| 75 |
"commit_msg_start": []
|
| 76 |
}
|
| 77 |
|
| 78 |
-
for col in COLS_TO_KEEP:
|
| 79 |
generated_data[col] = []
|
| 80 |
|
| 81 |
for _, row in tqdm(df.iterrows(), total=len(df)):
|
|
@@ -87,6 +91,9 @@ def transform(df):
|
|
| 87 |
for col in COLS_TO_KEEP:
|
| 88 |
generated_data[col].append(row[col])
|
| 89 |
|
|
|
|
|
|
|
|
|
|
| 90 |
generated_df = pd.DataFrame.from_dict(generated_data)
|
| 91 |
generated_df['end_to_start'] = True
|
| 92 |
|
|
|
|
| 1 |
+
from itertools import chain
|
| 2 |
+
|
| 3 |
import pandas as pd
|
| 4 |
from tqdm import tqdm
|
| 5 |
|
|
|
|
| 9 |
from api_wrappers import grazie_wrapper, hf_data_loader
|
| 10 |
from generation_steps import examples
|
| 11 |
|
| 12 |
+
GENERATION_MULTIPLIER = 3
|
| 13 |
REL_INSERTIONS_THRESHOLD = 0.5
|
| 14 |
+
GENERATION_ATTEMPTS = 3
|
| 15 |
|
| 16 |
|
| 17 |
def build_prompt(reference, diff):
|
|
|
|
| 63 |
|
| 64 |
COLS_TO_KEEP = ["hash", "repo", "commit_msg_end", "mods", "session"]
|
| 65 |
|
| 66 |
+
COLS_TO_DEFAULT = {"edit_time": None}
|
| 67 |
+
|
| 68 |
|
| 69 |
def transform(df):
|
| 70 |
print(f"End -> start synthesis:")
|
|
|
|
| 79 |
"commit_msg_start": []
|
| 80 |
}
|
| 81 |
|
| 82 |
+
for col in chain(COLS_TO_KEEP, COLS_TO_DEFAULT):
|
| 83 |
generated_data[col] = []
|
| 84 |
|
| 85 |
for _, row in tqdm(df.iterrows(), total=len(df)):
|
|
|
|
| 91 |
for col in COLS_TO_KEEP:
|
| 92 |
generated_data[col].append(row[col])
|
| 93 |
|
| 94 |
+
for col in COLS_TO_DEFAULT:
|
| 95 |
+
generated_data[col].append(COLS_TO_DEFAULT[col])
|
| 96 |
+
|
| 97 |
generated_df = pd.DataFrame.from_dict(generated_data)
|
| 98 |
generated_df['end_to_start'] = True
|
| 99 |
|
generation_steps/synthetic_start_to_end.py
CHANGED
|
@@ -7,9 +7,9 @@ import statistics
|
|
| 7 |
from api_wrappers import grazie_wrapper
|
| 8 |
from generation_steps import examples
|
| 9 |
|
| 10 |
-
GENERATION_MULTIPLIER =
|
| 11 |
REL_DELETIONS_THRESHOLD = 0.75
|
| 12 |
-
GENERATION_ATTEMPTS =
|
| 13 |
|
| 14 |
|
| 15 |
def build_prompt(prediction, diff):
|
|
|
|
| 7 |
from api_wrappers import grazie_wrapper
|
| 8 |
from generation_steps import examples
|
| 9 |
|
| 10 |
+
GENERATION_MULTIPLIER = 3
|
| 11 |
REL_DELETIONS_THRESHOLD = 0.75
|
| 12 |
+
GENERATION_ATTEMPTS = 3
|
| 13 |
|
| 14 |
|
| 15 |
def build_prompt(prediction, diff):
|
generate_synthetic_dataset.py β run_pipeline.py
RENAMED
|
File without changes
|