Petr Tsvetkov
Add distribution charts; add more detailed statistics; compute multi-reference TER as mean of TERs for each reference to improve the performance
303303b
import Levenshtein | |
import evaluate | |
import pandas as pd | |
from tqdm import tqdm | |
import config | |
from analysis_util import correlations_for_group | |
from api_wrappers import hf_data_loader | |
from custom_metrics import gpt_eval | |
BLEU = evaluate.load('bleu', cache_dir=config.CACHE_DIR) | |
def bleu_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return BLEU.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["bleu"] | |
return BLEU.compute(predictions=[pred], references=[ref])["bleu"] | |
METEOR = evaluate.load('meteor', cache_dir=config.CACHE_DIR) | |
def meteor_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return METEOR.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["meteor"] | |
return METEOR.compute(predictions=[pred], references=[ref])["meteor"] | |
ROUGE = evaluate.load('rouge', cache_dir=config.CACHE_DIR) | |
def rouge1_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return ROUGE.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["rouge1"] | |
return ROUGE.compute(predictions=[pred], references=[ref])["rouge1"] | |
def rouge2_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return ROUGE.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["rouge2"] | |
return ROUGE.compute(predictions=[pred], references=[ref])["rouge2"] | |
def rougeL_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return ROUGE.compute(predictions=[pred] * len(kwargs["refs"]), references=kwargs["refs"])["rougeL"] | |
return ROUGE.compute(predictions=[pred], references=[ref])["rougeL"] | |
BERTSCORE = evaluate.load('bertscore', cache_dir=config.CACHE_DIR) | |
def bertscore_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return \ | |
BERTSCORE.compute(predictions=[pred], references=[kwargs["refs"]], model_type="distilbert-base-uncased")[ | |
"f1"][0] | |
return BERTSCORE.compute(predictions=[pred], references=[ref], model_type="distilbert-base-uncased")["f1"][0] | |
CHRF = evaluate.load("chrf") | |
def chrf_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
return CHRF.compute(predictions=[pred], references=[kwargs["refs"]])["score"] | |
return CHRF.compute(predictions=[pred], references=[[ref]])["score"] | |
TER = evaluate.load("ter") | |
def ter_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
scores = [TER.compute(predictions=[pred], references=[[ref]])["score"] for ref in kwargs["refs"]] | |
return sum(scores) / len(scores) | |
return TER.compute(predictions=[pred], references=[[ref]])["score"] | |
def edit_distance_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
scores = [Levenshtein.distance(pred, ref) for ref in kwargs["refs"]] | |
return sum(scores) / len(scores) | |
return Levenshtein.distance(pred, ref) | |
def edit_distance_norm_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
scores = [Levenshtein.distance(pred, ref) / len(pred) for ref in kwargs["refs"]] | |
return sum(scores) / len(scores) | |
return Levenshtein.distance(pred, ref) / len(pred) | |
def edit_time_fn(pred, ref, **kwargs): | |
return kwargs["edittime"] | |
def gptscore_ref_1_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
scores = [gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=1) for ref in kwargs["refs"]] | |
return sum(scores) / len(scores) | |
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=1) | |
def gptscore_ref_3_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
scores = [gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=3) for ref in kwargs["refs"]] | |
return sum(scores) / len(scores) | |
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=3) | |
def gptscore_ref_5_fn(pred, ref, **kwargs): | |
if "refs" in kwargs: | |
scores = [gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=5) for ref in kwargs["refs"]] | |
return sum(scores) / len(scores) | |
return gpt_eval.compute_ref(prediction=pred, reference=ref, n_requests=5) | |
def gptscore_noref_1_fn(pred, ref, **kwargs): | |
return gpt_eval.compute_noref(prediction=pred, diff=kwargs['diff'], n_requests=1) | |
def gptscore_noref_3_fn(pred, ref, **kwargs): | |
return gpt_eval.compute_noref(prediction=pred, diff=kwargs['diff'], n_requests=3) | |
def gptscore_noref_5_fn(pred, ref, **kwargs): | |
return gpt_eval.compute_noref(prediction=pred, diff=kwargs['diff'], n_requests=5) | |
IND_METRICS = { | |
"editdist": edit_distance_fn, | |
"editdist-norm": edit_distance_norm_fn, | |
# "gptscore-ref-1-req": gptscore_ref_1_fn, | |
# "gptscore-ref-3-req": gptscore_ref_3_fn, | |
# "gptscore-ref-5-req": gptscore_ref_5_fn, | |
# "gptscore-noref-1-req": gptscore_noref_1_fn, | |
# "gptscore-noref-3-req": gptscore_noref_3_fn, | |
# "gptscore-noref-5-req": gptscore_noref_5_fn, | |
"bleu": bleu_fn, | |
"meteor": meteor_fn, | |
"rouge1": rouge1_fn, | |
"rouge2": rouge2_fn, | |
"rougeL": rougeL_fn, | |
"bertscore": bertscore_fn, | |
"chrF": chrf_fn, | |
"ter": ter_fn, | |
} | |
AGGR_METRICS = IND_METRICS.copy() | |
# del AGGR_METRICS["gptscore-ref-1-req"] | |
# del AGGR_METRICS["gptscore-noref-1-req"] | |
REL_METRICS = { | |
"editdist": edit_distance_fn, | |
"editdist-norm": edit_distance_norm_fn, | |
"edittime": edit_time_fn, | |
} | |
def attach_references(df): | |
reference_df = hf_data_loader.load_full_commit_as_pandas().set_index(["hash", "repo"])[["reference"]] | |
df = df.set_index(["hash", "repo"]) | |
return df.join(other=reference_df, how="left").reset_index() | |
def compute_metrics(df): | |
tqdm.pandas() | |
def apply_metric_fn_to_row(row, fn, col_pred, col_ref): | |
return fn(row[col_pred], row[col_ref], edittime=row['edit_time'], diff=str(row['mods'])) | |
for metric in AGGR_METRICS: | |
print(f"Computing {metric} for the aggregated independent pairs") | |
values = [] | |
for i, row in tqdm(df.iterrows(), total=len(df)): | |
others = df[(df["hash"] == row["hash"]) & (df["repo"] == row["repo"]) & ( | |
df["commit_msg_start"] != row["commit_msg_start"]) & ( | |
df["commit_msg_end"] != row["commit_msg_end"])]['commit_msg_end'].to_list() | |
others.append(row["reference"]) | |
others = list(set(others)) | |
metric_fn = AGGR_METRICS[metric] | |
values.append( | |
metric_fn( | |
row['commit_msg_start'], None, refs=others, edittime=row['edit_time'], diff=str(row['mods']) | |
) | |
) | |
df[f"{metric}_aggr"] = values | |
for metric in REL_METRICS: | |
print(f"Computing {metric} for the related pairs") | |
metric_fn = REL_METRICS[metric] | |
df[f"{metric}_related"] = df.progress_apply( | |
lambda row: apply_metric_fn_to_row(row=row, | |
fn=metric_fn, | |
col_pred="commit_msg_start", | |
col_ref="commit_msg_end"), | |
axis=1 | |
) | |
for metric in IND_METRICS: | |
print(f"Computing {metric} for the independent pairs") | |
metric_fn = IND_METRICS[metric] | |
df[f"{metric}_independent"] = df.progress_apply( | |
lambda row: apply_metric_fn_to_row(row=row, | |
fn=metric_fn, | |
col_pred="commit_msg_start", | |
col_ref="reference"), | |
axis=1 | |
) | |
for rel_metric in REL_METRICS: | |
for ind_metric in IND_METRICS: | |
df[f"rel_{rel_metric}_ind_{ind_metric}_pearson"] = ( | |
df[f"{rel_metric}_related"].corr(df[f"{ind_metric}_independent"], method="pearson")) | |
df[f"rel_{rel_metric}_ind_{ind_metric}_spearman"] = ( | |
df[f"{rel_metric}_related"].corr(df[f"{ind_metric}_independent"], method="spearman")) | |
for aggr_metric in AGGR_METRICS: | |
df[f"rel_{rel_metric}_aggr_{aggr_metric}_pearson"] = ( | |
df[f"{rel_metric}_related"].corr(df[f"{aggr_metric}_aggr"], method="pearson")) | |
df[f"rel_{rel_metric}_aggr_{aggr_metric}_spearman"] = ( | |
df[f"{rel_metric}_related"].corr(df[f"{aggr_metric}_aggr"], method="spearman")) | |
return df | |
def compute_correlations(df: pd.DataFrame): | |
grouped_df = df.groupby(by=["end_to_start", "start_to_end"]) | |
correlations = grouped_df.apply(correlations_for_group, include_groups=False) | |
return correlations | |
def transform(df): | |
print("Computing metrics") | |
df = attach_references(df) | |
df = compute_metrics(df) | |
correlations_for_groups = compute_correlations(df) | |
correlations_for_groups.to_csv(config.METRICS_CORRELATIONS_ARTIFACT) | |
df.to_csv(config.SYNTHETIC_DATASET_ARTIFACT) | |
print("Done") | |
return df | |
def main(): | |
df = pd.read_csv(config.START_TO_END_ARTIFACT, index_col=[0]) | |
transform(df) | |
if __name__ == '__main__': | |
main() | |