Spaces:
Sleeping
Sleeping
from dataclasses import dataclass, field | |
from typing import Callable | |
import numpy as np | |
class NeuralNetwork: | |
epochs: int | |
learning_rate: float | |
activation_func: Callable | |
func_prime: Callable | |
hidden_size: int | |
w1: np.array | |
w2: np.array | |
b1: np.array | |
b2: np.array | |
mse: float = 0 | |
loss_history: list = field( | |
default_factory=lambda: [], | |
) | |
def predict(self, x: np.array) -> np.array: | |
n1 = self.compute_node(x, self.w1, self.b1, self.activation_func) | |
return self.compute_node(n1, self.w2, self.b2, self.activation_func) | |
def set_loss_hist(self, loss_hist: list) -> None: | |
self.loss_history = loss_hist | |
def eval(self, X_test, y_test) -> None: | |
self.mse = np.mean((self.predict(X_test) - y_test) ** 2) | |
def compute_node(arr, w, b, func) -> np.array: | |
return func(np.dot(arr, w) + b) | |
def from_dict(cls, dct): | |
return cls(**dct) | |
def to_dict(self) -> dict: | |
return { | |
"w1": self.w1.tolist(), | |
"w2": self.w2.tolist(), | |
"b1": self.b1.tolist(), | |
"b2": self.b2.tolist(), | |
"epochs": self.epochs, | |
"learning_rate": self.learning_rate, | |
"activation_func": self.activation_func.__name__, | |
"func_prime": self.func_prime.__name__, | |
"hidden_size": self.hidden_size, | |
"mse": self.mse, | |
"loss_history": self.loss_history, | |
} | |