Jekyll2000 commited on
Commit
b959202
·
verified ·
1 Parent(s): b6c2562

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +161 -118
app.py CHANGED
@@ -1,70 +1,107 @@
 
 
 
 
1
  import gradio as gr
2
  import numpy as np
3
- import random
4
- from diffusers import DiffusionPipeline
5
  import torch
 
6
 
7
- device = "cuda" if torch.cuda.is_available() else "cpu"
 
 
8
 
9
- if torch.cuda.is_available():
10
- torch.cuda.max_memory_allocated(device=device)
11
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
12
- pipe.enable_xformers_memory_efficient_attention()
13
- pipe = pipe.to(device)
14
- else:
15
- pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
16
- pipe = pipe.to(device)
 
17
 
18
  MAX_SEED = np.iinfo(np.int32).max
19
- MAX_IMAGE_SIZE = 1024
20
 
21
- def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
 
22
 
23
- if randomize_seed:
24
- seed = random.randint(0, MAX_SEED)
25
-
26
- generator = torch.Generator().manual_seed(seed)
 
 
 
 
 
 
 
 
 
27
 
28
- image = pipe(
29
- prompt = prompt,
30
- negative_prompt = negative_prompt,
31
- guidance_scale = guidance_scale,
32
- num_inference_steps = num_inference_steps,
33
- width = width,
34
- height = height,
35
- generator = generator
36
- ).images[0]
37
 
38
- return image
39
-
40
- examples = [
41
- "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
42
- "An astronaut riding a green horse",
43
- "A delicious ceviche cheesecake slice",
44
- ]
45
-
46
- css="""
47
- #col-container {
48
- margin: 0 auto;
49
- max-width: 520px;
50
- }
51
- """
52
 
53
- if torch.cuda.is_available():
54
- power_device = "GPU"
55
- else:
56
- power_device = "CPU"
 
 
 
 
 
 
 
 
 
 
 
 
57
 
58
- with gr.Blocks(css=css) as demo:
59
 
60
- with gr.Column(elem_id="col-container"):
61
- gr.Markdown(f"""
62
- # Text-to-Image Gradio Template
63
- Currently running on {power_device}.
64
- """)
65
-
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
66
  with gr.Row():
67
-
68
  prompt = gr.Text(
69
  label="Prompt",
70
  show_label=False,
@@ -72,75 +109,81 @@ with gr.Blocks(css=css) as demo:
72
  placeholder="Enter your prompt",
73
  container=False,
74
  )
75
-
76
  run_button = gr.Button("Run", scale=0)
77
-
78
- result = gr.Image(label="Result", show_label=False)
79
-
80
- with gr.Accordion("Advanced Settings", open=False):
81
-
82
- negative_prompt = gr.Text(
83
- label="Negative prompt",
84
- max_lines=1,
85
- placeholder="Enter a negative prompt",
86
- visible=False,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
87
  )
88
-
89
- seed = gr.Slider(
90
- label="Seed",
91
- minimum=0,
92
- maximum=MAX_SEED,
93
- step=1,
94
- value=0,
95
  )
96
-
97
- randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
98
-
99
- with gr.Row():
100
-
101
- width = gr.Slider(
102
- label="Width",
103
- minimum=256,
104
- maximum=MAX_IMAGE_SIZE,
105
- step=32,
106
- value=512,
107
- )
108
-
109
- height = gr.Slider(
110
- label="Height",
111
- minimum=256,
112
- maximum=MAX_IMAGE_SIZE,
113
- step=32,
114
- value=512,
115
- )
116
-
117
- with gr.Row():
118
-
119
- guidance_scale = gr.Slider(
120
- label="Guidance scale",
121
- minimum=0.0,
122
- maximum=10.0,
123
- step=0.1,
124
- value=0.0,
125
- )
126
-
127
- num_inference_steps = gr.Slider(
128
- label="Number of inference steps",
129
- minimum=1,
130
- maximum=12,
131
- step=1,
132
- value=2,
133
- )
134
-
135
- gr.Examples(
136
- examples = examples,
137
- inputs = [prompt]
138
- )
139
 
140
- run_button.click(
141
- fn = infer,
142
- inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
143
- outputs = [result]
 
144
  )
 
145
 
146
- demo.queue().launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import random
3
+ import uuid
4
+
5
  import gradio as gr
6
  import numpy as np
7
+ from PIL import Image
8
+ import spaces
9
  import torch
10
+ from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
11
 
12
+ DESCRIPTION = """
13
+ # DALL•E 3 Image-Generation
14
+ """
15
 
16
+ def save_image(img):
17
+ unique_name = str(uuid.uuid4()) + ".png"
18
+ img.save(unique_name)
19
+ return unique_name
20
+
21
+ def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
22
+ if randomize_seed:
23
+ seed = random.randint(0, MAX_SEED)
24
+ return seed
25
 
26
  MAX_SEED = np.iinfo(np.int32).max
 
27
 
28
+ if not torch.cuda.is_available():
29
+ DESCRIPTION += "\n<p>Image Generation.</p>"
30
 
31
+ MAX_SEED = np.iinfo(np.int32).max
32
+
33
+ USE_TORCH_COMPILE = 0
34
+ ENABLE_CPU_OFFLOAD = 0
35
+
36
+
37
+ if torch.cuda.is_available():
38
+ pipe = StableDiffusionXLPipeline.from_pretrained(
39
+ "fluently/Fluently-XL-Final",
40
+ torch_dtype=torch.float16,
41
+ use_safetensors=True,
42
+ )
43
+ pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
44
 
 
 
 
 
 
 
 
 
 
45
 
46
+ pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
47
+ pipe.set_adapters("dalle")
 
 
 
 
 
 
 
 
 
 
 
 
48
 
49
+ pipe.to("cuda")
50
+
51
+
52
+
53
+ @spaces.GPU(enable_queue=True)
54
+ def generate(
55
+ prompt: str,
56
+ negative_prompt: str = "",
57
+ use_negative_prompt: bool = False,
58
+ seed: int = 0,
59
+ width: int = 1024,
60
+ height: int = 1024,
61
+ guidance_scale: float = 3,
62
+ randomize_seed: bool = False,
63
+ progress=gr.Progress(track_tqdm=True),
64
+ ):
65
 
 
66
 
67
+ seed = int(randomize_seed_fn(seed, randomize_seed))
68
+
69
+ if not use_negative_prompt:
70
+ negative_prompt = "" # type: ignore
71
+
72
+ images = pipe(
73
+ prompt=prompt,
74
+ negative_prompt=negative_prompt,
75
+ width=width,
76
+ height=height,
77
+ guidance_scale=guidance_scale,
78
+ num_inference_steps=25,
79
+ num_images_per_prompt=1,
80
+ cross_attention_kwargs={"scale": 0.65},
81
+ output_type="pil",
82
+ ).images
83
+ image_paths = [save_image(img) for img in images]
84
+ print(image_paths)
85
+ return image_paths, seed
86
+
87
+
88
+ css = '''
89
+ .gradio-container{max-width: 560px !important}
90
+ h1{text-align:center}
91
+ footer {
92
+ visibility: hidden
93
+ }
94
+ '''
95
+ with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
96
+ gr.Markdown(DESCRIPTION)
97
+ gr.DuplicateButton(
98
+ value="Duplicate Space for private use",
99
+ elem_id="duplicate-button",
100
+ visible=False,
101
+ )
102
+
103
+ with gr.Group():
104
  with gr.Row():
 
105
  prompt = gr.Text(
106
  label="Prompt",
107
  show_label=False,
 
109
  placeholder="Enter your prompt",
110
  container=False,
111
  )
 
112
  run_button = gr.Button("Run", scale=0)
113
+ result = gr.Gallery(label="Result", columns=1, preview=True, show_label=False)
114
+ with gr.Accordion("Advanced options", open=False):
115
+ use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=True)
116
+ negative_prompt = gr.Text(
117
+ label="Negative prompt",
118
+ lines=4,
119
+ max_lines=6,
120
+ value="""(deformed, distorted, disfigured:1.3), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers:1.4), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, (NSFW:1.25)""",
121
+ placeholder="Enter a negative prompt",
122
+ visible=True,
123
+ )
124
+ seed = gr.Slider(
125
+ label="Seed",
126
+ minimum=0,
127
+ maximum=MAX_SEED,
128
+ step=1,
129
+ value=0,
130
+ visible=True
131
+ )
132
+ randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
133
+ with gr.Row(visible=True):
134
+ width = gr.Slider(
135
+ label="Width",
136
+ minimum=512,
137
+ maximum=2048,
138
+ step=8,
139
+ value=1024,
140
  )
141
+ height = gr.Slider(
142
+ label="Height",
143
+ minimum=512,
144
+ maximum=2048,
145
+ step=8,
146
+ value=1024,
 
147
  )
148
+ with gr.Row():
149
+ guidance_scale = gr.Slider(
150
+ label="Guidance Scale",
151
+ minimum=0.1,
152
+ maximum=20.0,
153
+ step=0.1,
154
+ value=6,
155
+ )
156
+
157
+
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
158
 
159
+ use_negative_prompt.change(
160
+ fn=lambda x: gr.update(visible=x),
161
+ inputs=use_negative_prompt,
162
+ outputs=negative_prompt,
163
+ api_name=False,
164
  )
165
+
166
 
167
+ gr.on(
168
+ triggers=[
169
+ prompt.submit,
170
+ negative_prompt.submit,
171
+ run_button.click,
172
+ ],
173
+ fn=generate,
174
+ inputs=[
175
+ prompt,
176
+ negative_prompt,
177
+ use_negative_prompt,
178
+ seed,
179
+ width,
180
+ height,
181
+ guidance_scale,
182
+ randomize_seed,
183
+ ],
184
+ outputs=[result, seed],
185
+ api_name="run",
186
+ )
187
+
188
+ if __name__ == "__main__":
189
+ demo.queue(max_size=20).launch(show_api=False, debug=False)