Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,107 +1,70 @@
|
|
1 |
-
import os
|
2 |
-
import random
|
3 |
-
import uuid
|
4 |
-
|
5 |
import gradio as gr
|
6 |
import numpy as np
|
7 |
-
|
8 |
-
import
|
9 |
import torch
|
10 |
-
from diffusers import StableDiffusionXLPipeline, EulerAncestralDiscreteScheduler
|
11 |
-
|
12 |
-
DESCRIPTION = """
|
13 |
-
# DALL•E 3 Image-Generation
|
14 |
-
"""
|
15 |
|
16 |
-
|
17 |
-
unique_name = str(uuid.uuid4()) + ".png"
|
18 |
-
img.save(unique_name)
|
19 |
-
return unique_name
|
20 |
-
|
21 |
-
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
22 |
-
if randomize_seed:
|
23 |
-
seed = random.randint(0, MAX_SEED)
|
24 |
-
return seed
|
25 |
-
|
26 |
-
MAX_SEED = np.iinfo(np.int32).max
|
27 |
|
28 |
-
if
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
MAX_SEED = np.iinfo(np.int32).max
|
|
|
32 |
|
33 |
-
|
34 |
-
ENABLE_CPU_OFFLOAD = 0
|
35 |
-
|
36 |
-
|
37 |
-
if torch.cuda.is_available():
|
38 |
-
pipe = StableDiffusionXLPipeline.from_pretrained(
|
39 |
-
"fluently/Fluently-XL-Final",
|
40 |
-
torch_dtype=torch.float16,
|
41 |
-
use_safetensors=True,
|
42 |
-
)
|
43 |
-
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
|
44 |
-
|
45 |
-
|
46 |
-
pipe.load_lora_weights("ehristoforu/dalle-3-xl-v2", weight_name="dalle-3-xl-lora-v2.safetensors", adapter_name="dalle")
|
47 |
-
pipe.set_adapters("dalle")
|
48 |
|
49 |
-
|
|
|
|
|
|
|
50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
52 |
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
use_negative_prompt: bool = False,
|
58 |
-
seed: int = 0,
|
59 |
-
width: int = 1024,
|
60 |
-
height: int = 1024,
|
61 |
-
guidance_scale: float = 3,
|
62 |
-
randomize_seed: bool = False,
|
63 |
-
progress=gr.Progress(track_tqdm=True),
|
64 |
-
):
|
65 |
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
prompt=prompt,
|
74 |
-
negative_prompt=negative_prompt,
|
75 |
-
width=width,
|
76 |
-
height=height,
|
77 |
-
guidance_scale=guidance_scale,
|
78 |
-
num_inference_steps=25,
|
79 |
-
num_images_per_prompt=1,
|
80 |
-
cross_attention_kwargs={"scale": 0.65},
|
81 |
-
output_type="pil",
|
82 |
-
).images
|
83 |
-
image_paths = [save_image(img) for img in images]
|
84 |
-
print(image_paths)
|
85 |
-
return image_paths, seed
|
86 |
-
|
87 |
-
|
88 |
-
css = '''
|
89 |
-
.gradio-container{max-width: 560px !important}
|
90 |
-
h1{text-align:center}
|
91 |
-
footer {
|
92 |
-
visibility: hidden
|
93 |
-
}
|
94 |
-
'''
|
95 |
-
with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
96 |
-
gr.Markdown(DESCRIPTION)
|
97 |
-
gr.DuplicateButton(
|
98 |
-
value="Duplicate Space for private use",
|
99 |
-
elem_id="duplicate-button",
|
100 |
-
visible=False,
|
101 |
-
)
|
102 |
-
|
103 |
-
with gr.Group():
|
104 |
with gr.Row():
|
|
|
105 |
prompt = gr.Text(
|
106 |
label="Prompt",
|
107 |
show_label=False,
|
@@ -109,81 +72,75 @@ with gr.Blocks(css=css, theme="pseudolab/huggingface-korea-theme") as demo:
|
|
109 |
placeholder="Enter your prompt",
|
110 |
container=False,
|
111 |
)
|
|
|
112 |
run_button = gr.Button("Run", scale=0)
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
)
|
124 |
-
seed = gr.Slider(
|
125 |
-
label="Seed",
|
126 |
-
minimum=0,
|
127 |
-
maximum=MAX_SEED,
|
128 |
-
step=1,
|
129 |
-
value=0,
|
130 |
-
visible=True
|
131 |
-
)
|
132 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
133 |
-
with gr.Row(visible=True):
|
134 |
-
width = gr.Slider(
|
135 |
-
label="Width",
|
136 |
-
minimum=512,
|
137 |
-
maximum=2048,
|
138 |
-
step=8,
|
139 |
-
value=1024,
|
140 |
-
)
|
141 |
-
height = gr.Slider(
|
142 |
-
label="Height",
|
143 |
-
minimum=512,
|
144 |
-
maximum=2048,
|
145 |
-
step=8,
|
146 |
-
value=1024,
|
147 |
)
|
148 |
-
|
149 |
-
|
150 |
-
label="
|
151 |
-
minimum=0
|
152 |
-
maximum=
|
153 |
-
step=
|
154 |
-
value=
|
155 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
156 |
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
inputs=use_negative_prompt,
|
162 |
-
outputs=negative_prompt,
|
163 |
-
api_name=False,
|
164 |
)
|
165 |
-
|
166 |
|
167 |
-
|
168 |
-
triggers=[
|
169 |
-
prompt.submit,
|
170 |
-
negative_prompt.submit,
|
171 |
-
run_button.click,
|
172 |
-
],
|
173 |
-
fn=generate,
|
174 |
-
inputs=[
|
175 |
-
prompt,
|
176 |
-
negative_prompt,
|
177 |
-
use_negative_prompt,
|
178 |
-
seed,
|
179 |
-
width,
|
180 |
-
height,
|
181 |
-
guidance_scale,
|
182 |
-
randomize_seed,
|
183 |
-
],
|
184 |
-
outputs=[result, seed],
|
185 |
-
api_name="run",
|
186 |
-
)
|
187 |
-
|
188 |
-
if __name__ == "__main__":
|
189 |
-
demo.queue(max_size=20).launch(show_api=False, debug=False)
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
import numpy as np
|
3 |
+
import random
|
4 |
+
from diffusers import DiffusionPipeline
|
5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
torch.cuda.max_memory_allocated(device=device)
|
11 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
12 |
+
pipe.enable_xformers_memory_efficient_attention()
|
13 |
+
pipe = pipe.to(device)
|
14 |
+
else:
|
15 |
+
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
16 |
+
pipe = pipe.to(device)
|
17 |
|
18 |
MAX_SEED = np.iinfo(np.int32).max
|
19 |
+
MAX_IMAGE_SIZE = 1024
|
20 |
|
21 |
+
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
|
23 |
+
if randomize_seed:
|
24 |
+
seed = random.randint(0, MAX_SEED)
|
25 |
+
|
26 |
+
generator = torch.Generator().manual_seed(seed)
|
27 |
|
28 |
+
image = pipe(
|
29 |
+
prompt = prompt,
|
30 |
+
negative_prompt = negative_prompt,
|
31 |
+
guidance_scale = guidance_scale,
|
32 |
+
num_inference_steps = num_inference_steps,
|
33 |
+
width = width,
|
34 |
+
height = height,
|
35 |
+
generator = generator
|
36 |
+
).images[0]
|
37 |
|
38 |
+
return image
|
39 |
+
|
40 |
+
examples = [
|
41 |
+
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
42 |
+
"An astronaut riding a green horse",
|
43 |
+
"A delicious ceviche cheesecake slice",
|
44 |
+
]
|
45 |
+
|
46 |
+
css="""
|
47 |
+
#col-container {
|
48 |
+
margin: 0 auto;
|
49 |
+
max-width: 520px;
|
50 |
+
}
|
51 |
+
"""
|
52 |
|
53 |
+
if torch.cuda.is_available():
|
54 |
+
power_device = "GPU"
|
55 |
+
else:
|
56 |
+
power_device = "CPU"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
|
58 |
+
with gr.Blocks(css=css) as demo:
|
59 |
|
60 |
+
with gr.Column(elem_id="col-container"):
|
61 |
+
gr.Markdown(f"""
|
62 |
+
# Text-to-Image Gradio Template
|
63 |
+
Currently running on {power_device}.
|
64 |
+
""")
|
65 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
66 |
with gr.Row():
|
67 |
+
|
68 |
prompt = gr.Text(
|
69 |
label="Prompt",
|
70 |
show_label=False,
|
|
|
72 |
placeholder="Enter your prompt",
|
73 |
container=False,
|
74 |
)
|
75 |
+
|
76 |
run_button = gr.Button("Run", scale=0)
|
77 |
+
|
78 |
+
result = gr.Image(label="Result", show_label=False)
|
79 |
+
|
80 |
+
with gr.Accordion("Advanced Settings", open=False):
|
81 |
+
|
82 |
+
negative_prompt = gr.Text(
|
83 |
+
label="Negative prompt",
|
84 |
+
max_lines=1,
|
85 |
+
placeholder="Enter a negative prompt",
|
86 |
+
visible=False,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
87 |
)
|
88 |
+
|
89 |
+
seed = gr.Slider(
|
90 |
+
label="Seed",
|
91 |
+
minimum=0,
|
92 |
+
maximum=MAX_SEED,
|
93 |
+
step=1,
|
94 |
+
value=0,
|
95 |
)
|
96 |
+
|
97 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
98 |
+
|
99 |
+
with gr.Row():
|
100 |
+
|
101 |
+
width = gr.Slider(
|
102 |
+
label="Width",
|
103 |
+
minimum=256,
|
104 |
+
maximum=MAX_IMAGE_SIZE,
|
105 |
+
step=32,
|
106 |
+
value=512,
|
107 |
+
)
|
108 |
+
|
109 |
+
height = gr.Slider(
|
110 |
+
label="Height",
|
111 |
+
minimum=256,
|
112 |
+
maximum=MAX_IMAGE_SIZE,
|
113 |
+
step=32,
|
114 |
+
value=512,
|
115 |
+
)
|
116 |
+
|
117 |
+
with gr.Row():
|
118 |
+
|
119 |
+
guidance_scale = gr.Slider(
|
120 |
+
label="Guidance scale",
|
121 |
+
minimum=0.0,
|
122 |
+
maximum=10.0,
|
123 |
+
step=0.1,
|
124 |
+
value=0.0,
|
125 |
+
)
|
126 |
+
|
127 |
+
num_inference_steps = gr.Slider(
|
128 |
+
label="Number of inference steps",
|
129 |
+
minimum=1,
|
130 |
+
maximum=12,
|
131 |
+
step=1,
|
132 |
+
value=2,
|
133 |
+
)
|
134 |
+
|
135 |
+
gr.Examples(
|
136 |
+
examples = examples,
|
137 |
+
inputs = [prompt]
|
138 |
+
)
|
139 |
|
140 |
+
run_button.click(
|
141 |
+
fn = infer,
|
142 |
+
inputs = [prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps],
|
143 |
+
outputs = [result]
|
|
|
|
|
|
|
144 |
)
|
|
|
145 |
|
146 |
+
demo.queue().launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|