Spaces:
Running
on
Zero
Running
on
Zero
from typing import * | |
import torch | |
import torch.nn as nn | |
from ..attention import MultiHeadAttention | |
from ..norm import LayerNorm32 | |
class AbsolutePositionEmbedder(nn.Module): | |
""" | |
Embeds spatial positions into vector representations. | |
""" | |
def __init__(self, channels: int, in_channels: int = 3): | |
super().__init__() | |
self.channels = channels | |
self.in_channels = in_channels | |
self.freq_dim = channels // in_channels // 2 | |
self.freqs = torch.arange(self.freq_dim, dtype=torch.float32) / self.freq_dim | |
self.freqs = 1.0 / (10000 ** self.freqs) | |
def _sin_cos_embedding(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Create sinusoidal position embeddings. | |
Args: | |
x: a 1-D Tensor of N indices | |
Returns: | |
an (N, D) Tensor of positional embeddings. | |
""" | |
self.freqs = self.freqs.to(x.device) | |
out = torch.outer(x, self.freqs) | |
out = torch.cat([torch.sin(out), torch.cos(out)], dim=-1) | |
return out | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
""" | |
Args: | |
x (torch.Tensor): (N, D) tensor of spatial positions | |
""" | |
N, D = x.shape | |
assert D == self.in_channels, "Input dimension must match number of input channels" | |
embed = self._sin_cos_embedding(x.reshape(-1)) | |
embed = embed.reshape(N, -1) | |
if embed.shape[1] < self.channels: | |
embed = torch.cat([embed, torch.zeros(N, self.channels - embed.shape[1], device=embed.device)], dim=-1) | |
return embed | |
class FeedForwardNet(nn.Module): | |
def __init__(self, channels: int, mlp_ratio: float = 4.0): | |
super().__init__() | |
self.mlp = nn.Sequential( | |
nn.Linear(channels, int(channels * mlp_ratio)), | |
nn.GELU(approximate="tanh"), | |
nn.Linear(int(channels * mlp_ratio), channels), | |
) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
return self.mlp(x) | |
class TransformerBlock(nn.Module): | |
""" | |
Transformer block (MSA + FFN). | |
""" | |
def __init__( | |
self, | |
channels: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
attn_mode: Literal["full", "windowed"] = "full", | |
window_size: Optional[int] = None, | |
shift_window: Optional[int] = None, | |
use_checkpoint: bool = False, | |
use_rope: bool = False, | |
qk_rms_norm: bool = False, | |
qkv_bias: bool = True, | |
ln_affine: bool = False, | |
): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
self.attn = MultiHeadAttention( | |
channels, | |
num_heads=num_heads, | |
attn_mode=attn_mode, | |
window_size=window_size, | |
shift_window=shift_window, | |
qkv_bias=qkv_bias, | |
use_rope=use_rope, | |
qk_rms_norm=qk_rms_norm, | |
) | |
self.mlp = FeedForwardNet( | |
channels, | |
mlp_ratio=mlp_ratio, | |
) | |
def _forward(self, x: torch.Tensor) -> torch.Tensor: | |
h = self.norm1(x) | |
h = self.attn(h) | |
x = x + h | |
h = self.norm2(x) | |
h = self.mlp(h) | |
x = x + h | |
return x | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
if self.use_checkpoint: | |
return torch.utils.checkpoint.checkpoint(self._forward, x, use_reentrant=False) | |
else: | |
return self._forward(x) | |
class TransformerCrossBlock(nn.Module): | |
""" | |
Transformer cross-attention block (MSA + MCA + FFN). | |
""" | |
def __init__( | |
self, | |
channels: int, | |
ctx_channels: int, | |
num_heads: int, | |
mlp_ratio: float = 4.0, | |
attn_mode: Literal["full", "windowed"] = "full", | |
window_size: Optional[int] = None, | |
shift_window: Optional[Tuple[int, int, int]] = None, | |
use_checkpoint: bool = False, | |
use_rope: bool = False, | |
qk_rms_norm: bool = False, | |
qk_rms_norm_cross: bool = False, | |
qkv_bias: bool = True, | |
ln_affine: bool = False, | |
): | |
super().__init__() | |
self.use_checkpoint = use_checkpoint | |
self.norm1 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
self.norm2 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
self.norm3 = LayerNorm32(channels, elementwise_affine=ln_affine, eps=1e-6) | |
self.self_attn = MultiHeadAttention( | |
channels, | |
num_heads=num_heads, | |
type="self", | |
attn_mode=attn_mode, | |
window_size=window_size, | |
shift_window=shift_window, | |
qkv_bias=qkv_bias, | |
use_rope=use_rope, | |
qk_rms_norm=qk_rms_norm, | |
) | |
self.cross_attn = MultiHeadAttention( | |
channels, | |
ctx_channels=ctx_channels, | |
num_heads=num_heads, | |
type="cross", | |
attn_mode="full", | |
qkv_bias=qkv_bias, | |
qk_rms_norm=qk_rms_norm_cross, | |
) | |
self.mlp = FeedForwardNet( | |
channels, | |
mlp_ratio=mlp_ratio, | |
) | |
def _forward(self, x: torch.Tensor, context: torch.Tensor): | |
h = self.norm1(x) | |
h = self.self_attn(h) | |
x = x + h | |
h = self.norm2(x) | |
h = self.cross_attn(h, context) | |
x = x + h | |
h = self.norm3(x) | |
h = self.mlp(h) | |
x = x + h | |
return x | |
def forward(self, x: torch.Tensor, context: torch.Tensor): | |
if self.use_checkpoint: | |
return torch.utils.checkpoint.checkpoint(self._forward, x, context, use_reentrant=False) | |
else: | |
return self._forward(x, context) | |