JeffLiang commited on
Commit
fcdbf88
·
1 Parent(s): d66c7c7
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +88 -0
  2. requirements.txt +9 -0
  3. sam_3d.py +266 -0
  4. sam_vit_b_01ec64.pth +3 -0
  5. scannet_data/scene0000_00/color/0.jpg +0 -0
  6. scannet_data/scene0000_00/color/100.jpg +0 -0
  7. scannet_data/scene0000_00/color/1000.jpg +0 -0
  8. scannet_data/scene0000_00/color/1020.jpg +0 -0
  9. scannet_data/scene0000_00/color/1040.jpg +0 -0
  10. scannet_data/scene0000_00/color/1060.jpg +0 -0
  11. scannet_data/scene0000_00/color/1080.jpg +0 -0
  12. scannet_data/scene0000_00/color/1100.jpg +0 -0
  13. scannet_data/scene0000_00/color/1120.jpg +0 -0
  14. scannet_data/scene0000_00/color/1140.jpg +0 -0
  15. scannet_data/scene0000_00/color/1160.jpg +0 -0
  16. scannet_data/scene0000_00/color/1180.jpg +0 -0
  17. scannet_data/scene0000_00/color/120.jpg +0 -0
  18. scannet_data/scene0000_00/color/1200.jpg +0 -0
  19. scannet_data/scene0000_00/color/1220.jpg +0 -0
  20. scannet_data/scene0000_00/color/1240.jpg +0 -0
  21. scannet_data/scene0000_00/color/1260.jpg +0 -0
  22. scannet_data/scene0000_00/color/1280.jpg +0 -0
  23. scannet_data/scene0000_00/color/1300.jpg +0 -0
  24. scannet_data/scene0000_00/color/1320.jpg +0 -0
  25. scannet_data/scene0000_00/color/1340.jpg +0 -0
  26. scannet_data/scene0000_00/color/1360.jpg +0 -0
  27. scannet_data/scene0000_00/color/1380.jpg +0 -0
  28. scannet_data/scene0000_00/color/140.jpg +0 -0
  29. scannet_data/scene0000_00/color/1400.jpg +0 -0
  30. scannet_data/scene0000_00/color/1420.jpg +0 -0
  31. scannet_data/scene0000_00/color/1440.jpg +0 -0
  32. scannet_data/scene0000_00/color/1460.jpg +0 -0
  33. scannet_data/scene0000_00/color/1480.jpg +0 -0
  34. scannet_data/scene0000_00/color/1500.jpg +0 -0
  35. scannet_data/scene0000_00/color/1520.jpg +0 -0
  36. scannet_data/scene0000_00/color/1540.jpg +0 -0
  37. scannet_data/scene0000_00/color/1560.jpg +0 -0
  38. scannet_data/scene0000_00/color/1580.jpg +0 -0
  39. scannet_data/scene0000_00/color/160.jpg +0 -0
  40. scannet_data/scene0000_00/color/1600.jpg +0 -0
  41. scannet_data/scene0000_00/color/1620.jpg +0 -0
  42. scannet_data/scene0000_00/color/1640.jpg +0 -0
  43. scannet_data/scene0000_00/color/1660.jpg +0 -0
  44. scannet_data/scene0000_00/color/1680.jpg +0 -0
  45. scannet_data/scene0000_00/color/1700.jpg +0 -0
  46. scannet_data/scene0000_00/color/1720.jpg +0 -0
  47. scannet_data/scene0000_00/color/1740.jpg +0 -0
  48. scannet_data/scene0000_00/color/1760.jpg +0 -0
  49. scannet_data/scene0000_00/color/1780.jpg +0 -0
  50. scannet_data/scene0000_00/color/180.jpg +0 -0
app.py ADDED
@@ -0,0 +1,88 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Facebook, Inc. and its affiliates.
2
+ # Copyright (c) Meta Platforms, Inc. All Rights Reserved
3
+
4
+ import os
5
+ import ast
6
+ import time
7
+ import random
8
+ from PIL import Image
9
+
10
+ import torch
11
+ import numpy as np
12
+ from tqdm import tqdm
13
+ import matplotlib.pyplot as plt
14
+ from plyfile import PlyData
15
+ import gradio as gr
16
+ import plotly.graph_objs as go
17
+
18
+ from sam_3d import SAM3DDemo
19
+
20
+ def pc_to_plot(pc):
21
+ return go.Figure(
22
+ data=[
23
+ go.Scatter3d(
24
+ x=pc['x'], y=pc['y'], z=pc['z'],
25
+ mode='markers',
26
+ marker=dict(
27
+ size=2,
28
+ color=['rgb({},{},{})'.format(r,g,b) for r,g,b in zip(pc['red'], pc['green'], pc['blue'])],
29
+ )
30
+ )
31
+ ],
32
+ layout=dict(
33
+ scene=dict(xaxis=dict(visible=False), yaxis=dict(visible=False), zaxis=dict(visible=False))
34
+ ),
35
+ )
36
+
37
+ def inference(scene_name, granularity, coords, plot):
38
+ print(scene_name, coords)
39
+ sam_3d = SAM3DDemo('vit_b', 'sam_vit_b_01ec64.pth', scene_name)
40
+ coords = ast.literal_eval(coords)
41
+ data_point_select, rgb_img_w_points, rgb_img_w_masks, data_final = sam_3d.run_with_coord(coords, int(granularity))
42
+ return pc_to_plot(data_point_select), Image.fromarray(rgb_img_w_points), Image.fromarray(rgb_img_w_masks), pc_to_plot(data_final)
43
+
44
+ plydatas = []
45
+ for scene_name in ['scene0000_00', 'scene0001_00', 'scene0002_00']:
46
+ plydata = PlyData.read(f"./scannet_data/{scene_name}/{scene_name}.ply")
47
+ data = plydata.elements[0].data
48
+ plydatas.append(data)
49
+
50
+ examples = [['scene0000_00', 0, [0, -2.5, 0.7], pc_to_plot(plydatas[0])],
51
+ ['scene0001_00', 0, [0, -2.5, 1], pc_to_plot(plydatas[1])],
52
+ ['scene0002_00', 0, [0, -2.5, 1], pc_to_plot(plydatas[2])],]
53
+
54
+ title = 'Segment_Anything on 3D in-door point clouds'
55
+
56
+ description = """
57
+ Gradio Demo for Segment Anything on 3D indoor scenes (ScanNet supported). \n
58
+ The logic is straighforward: 1) Find a point in 3D; 2) project the 3D point to valid images; 3) perform 2D SAM on valid images; 4) reproject 2D results back to 3D; 5) Visualization.
59
+ Unfortunatly, it does not support click the point cloud to generate coordinates automatically. You may want to write down the coordinates and put it manually. \n
60
+ """
61
+
62
+ article = """
63
+ <p style='text-align: center'>
64
+ <a href='https://arxiv.org/abs/2210.04150' target='_blank'>
65
+ Open-Vocabulary Semantic Segmentation with Mask-adapted CLIP
66
+ </a>
67
+ |
68
+ <a href='https://github.com/facebookresearch/ov-seg' target='_blank'>Github Repo</a></p>
69
+ """
70
+
71
+
72
+
73
+ gr.Interface(
74
+ inference,
75
+ inputs=[
76
+ gr.Dropdown(choices=['scene0000_00', 'scene0001_00', 'scene0002_00'], label="Scannet scene name (limited scenes supported)"),
77
+ gr.Dropdown(choices=[0, 1, 2], label="Mask granularity from 0 (most coarse) to 2 (most precise)"),
78
+ gr.Textbox(lines=1, label='Coordinates'),
79
+ gr.Plot(label="Input Point cloud (For visualization and point finding only, click responce not supported yet.)"),
80
+ ],
81
+ outputs=[gr.Plot(label='Selected point(s): red points show the top 10 cloest points for your input anchor point'),
82
+ gr.Image(label='Selected image with projected points'),
83
+ gr.Image(label='Selected image processed after SAM'),
84
+ gr.Plot(label='Output Point cloud: blue points represent the mask')],
85
+ title=title,
86
+ description=description,
87
+ article=article,
88
+ examples=examples).launch()
requirements.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ gradio
2
+ numpy
3
+ plyfile
4
+ plotly
5
+ matplotlib
6
+ opencv-python
7
+ torch==1.10.1+cu113
8
+ torchvision==0.11.2+cu113
9
+ git+https://github.com/facebookresearch/segment-anything.git
sam_3d.py ADDED
@@ -0,0 +1,266 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import copy
3
+ import random
4
+ from PIL import Image
5
+
6
+ import torch
7
+ import matplotlib.pyplot as plt
8
+ import numpy as np
9
+ from plyfile import PlyData
10
+
11
+ from segment_anything import SamPredictor, sam_model_registry
12
+
13
+ def get_image_ids(path):
14
+ files = os.listdir(path)
15
+ files = [f.split('.')[0] for f in files if os.path.isfile(path+'/'+f)] #Filtering only the files.
16
+ return sorted(files)
17
+
18
+ def load_align_matrix_from_txt(path):
19
+ lines = open(path).readlines()
20
+ # test set data doesn't have align_matrix
21
+ axis_align_matrix = np.eye(4)
22
+ for line in lines:
23
+ if 'axisAlignment' in line:
24
+ axis_align_matrix = [
25
+ float(x)
26
+ for x in line.rstrip().strip('axisAlignment = ').split(' ')
27
+ ]
28
+ break
29
+ axis_align_matrix = np.array(axis_align_matrix).reshape((4, 4))
30
+ return axis_align_matrix
31
+
32
+ def load_matrix_from_txt(path, shape=(4, 4)):
33
+ with open(path) as f:
34
+ txt = f.readlines()
35
+ txt = ''.join(txt).replace('\n', ' ')
36
+ matrix = [float(v) for v in txt.split()]
37
+ return np.array(matrix).reshape(shape)
38
+
39
+ def load_image(path):
40
+ image = Image.open(path)
41
+ return np.array(image)
42
+
43
+ def convert_from_uvd(u, v, d, intr, pose, align):
44
+ extr = np.linalg.inv(pose)
45
+ if d == 0:
46
+ return None, None, None
47
+
48
+ fx = intr[0, 0]
49
+ fy = intr[1, 1]
50
+ cx = intr[0, 2]
51
+ cy = intr[1, 2]
52
+ depth_scale = 1000
53
+
54
+ z = d / depth_scale
55
+ x = (u - cx) * z / fx
56
+ y = (v - cy) * z / fy
57
+
58
+ world = (align @ pose @ np.array([x, y, z, 1]))
59
+ return world[:3] / world[3]
60
+
61
+ # Find the cloest point in the cloud with select
62
+ def find_closest_point(point, point_cloud, num=1):
63
+ # calculate the Euclidean distances between the input vector and each row of the matrix
64
+ distances = np.linalg.norm(point_cloud - point, axis=1)
65
+
66
+ # find the index of the row with the minimum distance
67
+ closest_index = np.argsort(distances)[:num]
68
+
69
+ # get the closest vector from the matrix
70
+ closest_vector = point_cloud[closest_index]
71
+
72
+ return closest_index, closest_vector
73
+
74
+ def plot_3d(xdata, ydata, zdata, color=None, b_min=2, b_max=8, view=(45, 45)):
75
+ fig, ax = plt.subplots(subplot_kw={"projection": "3d"}, dpi=200)
76
+ ax.view_init(view[0], view[1])
77
+ ax.set_xlim(b_min, b_max)
78
+ ax.set_ylim(b_min, b_max)
79
+ ax.set_zlim(b_min, b_max)
80
+ ax.scatter3D(xdata, ydata, zdata, c=color, cmap='rgb', s=0.1)
81
+
82
+ class SAM3DDemo(object):
83
+ def __init__(self, sam_model, sam_ckpt, scene_name):
84
+ sam = sam_model_registry[sam_model](checkpoint=sam_ckpt).cuda()
85
+ self.predictor = SamPredictor(sam)
86
+ self.scene_name = scene_name
87
+ scene_path = os.path.join('./scannet_data', scene_name)
88
+ self.color_path = os.path.join(scene_path, 'color')
89
+ self.depth_path = os.path.join(scene_path, 'depth')
90
+ self.pose_path = os.path.join(scene_path, 'pose')
91
+ self.intrinsic_path = os.path.join(scene_path, 'intrinsic')
92
+ self.align_matirx_path = f'{scene_path}/{scene_name}.txt'
93
+ self.img_ids = get_image_ids(self.color_path)
94
+ self.align_matrix = load_align_matrix_from_txt(self.align_matirx_path)
95
+ self.intrinsic_depth = load_matrix_from_txt(os.path.join(self.intrinsic_path, 'intrinsic_depth.txt'))
96
+ self.poses = [load_matrix_from_txt(os.path.join(self.pose_path, f'{i}.txt')) for i in self.img_ids]
97
+ self.rgb_images = [load_image(os.path.join(self.color_path, f'{i}.jpg')) for i in self.img_ids]
98
+ self.depth_images = [load_image(os.path.join(self.depth_path, f'{i}.png'))for i in self.img_ids]
99
+
100
+ def project_3D_to_images(self, select_points, valid_margin=20):
101
+ valid_img_ids = []
102
+ valid_points = {}
103
+ for img_i in range(len(self.img_ids)):
104
+ rgb_img = self.rgb_images[img_i]
105
+ depth_img = self.depth_images[img_i]
106
+ extrinsics = self.poses[img_i]
107
+ projection_matrix = self.intrinsic_depth @ np.linalg.inv(self.align_matrix @ extrinsics)
108
+ raw_points = np.vstack((select_points.T, np.ones((1, select_points.T.shape[1]))))
109
+ raw_points = np.dot(projection_matrix, raw_points)
110
+ # bounding simplest
111
+ points = raw_points[:2, :] / raw_points[2, :]
112
+ points = np.round(points).astype(np.int32)
113
+ valid = (points[0] >= valid_margin).all() & (points[1] >= valid_margin).all() \
114
+ & (points[0] < (rgb_img.shape[1] - valid_margin)).all() & (points[1] < (rgb_img.shape[0] - valid_margin)).all() \
115
+ & (raw_points[2, :] > 0).all()
116
+ if valid:
117
+ depth_margin = 0.4
118
+ gt_depths = depth_img[points[1], points[0]] / 1000
119
+ proj_depths = raw_points[2, :]
120
+ if (proj_depths[0] > (1 - depth_margin / 2.0) * gt_depths[0]) & (proj_depths[0] < (1 + depth_margin / 2.0) * gt_depths[0]):
121
+ valid_img_ids.append(img_i)
122
+ valid_points[img_i] = points
123
+
124
+ show_id = valid_img_ids[-1]
125
+ show_points = valid_points[show_id]
126
+ rgb_img = self.rgb_images[show_id]
127
+ fig, ax = plt.subplots()
128
+ ax.imshow(rgb_img)
129
+ for x, y in zip(show_points[0], show_points[1]):
130
+ ax.plot(x, y, 'ro')
131
+ canvas = fig.canvas
132
+ canvas.draw()
133
+ w, h = canvas.get_width_height()
134
+ rgb_img_w_points = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(h, w, 3)
135
+ print("projecting 3D point to images successfully...")
136
+ return valid_img_ids, valid_points, rgb_img_w_points
137
+
138
+ def process_img_w_sam(self, valid_img_ids, valid_points, granularity):
139
+ mask_colors = []
140
+ for img_i in range(len(self.img_ids)):
141
+ rgb_img = self.rgb_images[img_i]
142
+ msk_color = np.full(rgb_img.shape, 0.5)
143
+ if img_i in valid_img_ids:
144
+ self.predictor.set_image(rgb_img)
145
+ point_coor = valid_points[img_i].T[0][None]
146
+ masks, _, _ = self.predictor.predict(point_coords=point_coor, point_labels=np.array([1]))
147
+ # fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(10, 5))
148
+ # for i in range(3):
149
+ # mask_img = masks[i][:,:,None] * rgb_img
150
+ # axs[i].set_title(f'granularity {i}')
151
+ # axs[i].imshow(mask_img)
152
+ m = masks[granularity]
153
+ msk_color[m] = [0, 0, 1.0]
154
+ mask_colors.append(msk_color)
155
+ fig, axs = plt.subplots(nrows=1, ncols=3, figsize=(24, 8))
156
+ for i in range(3):
157
+ mask_img = masks[i][:,:,None] * rgb_img
158
+ axs[i].set_title(f'granularity {i}')
159
+ axs[i].imshow(mask_img)
160
+ canvas = fig.canvas
161
+ canvas.draw()
162
+ w, h = canvas.get_width_height()
163
+ rgb_img_w_masks = np.frombuffer(canvas.tostring_rgb(), dtype='uint8').reshape(h, w, 3)
164
+ print("processing images with SAM successfully...")
165
+ return mask_colors, rgb_img_w_masks
166
+
167
+ def project_mask_to_3d(self, mask_colors, sample_ratio=0.002):
168
+ x_data, y_data, z_data, c_data = [], [], [], []
169
+ for img_i in range(len(self.img_ids)):
170
+ id = self.img_ids[img_i]
171
+ # RGBD
172
+ d = self.depth_images[img_i]
173
+ c = self.rgb_images[img_i]
174
+ p = self.poses[img_i]
175
+ msk_color = mask_colors[img_i]
176
+ # Projecting RGB features into the point space
177
+ for i in range(d.shape[0]):
178
+ for j in range(d.shape[1]):
179
+ if random.random() < sample_ratio:
180
+ x, y, z = convert_from_uvd(j, i, d[i, j], self.intrinsic_depth, p, self.align_matrix)
181
+ if x is None:
182
+ continue
183
+ x_data.append(x)
184
+ y_data.append(y)
185
+ z_data.append(z)
186
+ ci = int(i * c.shape[0] / d.shape[0])
187
+ cj = int(j * c.shape[1] / d.shape[1])
188
+ c_data.append([msk_color[ci, cj]])
189
+ print("reprojecting images to 3D points successfully...")
190
+ return x_data, y_data, z_data, c_data
191
+
192
+ def match_projected_point_to_gt_point(self, x_data, y_data, z_data, c_data, gt_coords):
193
+
194
+ c_data = torch.tensor(np.concatenate(c_data, axis=0))
195
+ img_coords = np.array([x_data, y_data, z_data], dtype=np.float32).T
196
+ gt_quant_coords = np.floor_divide(gt_coords, 0.2)
197
+ img_quant_coords = np.floor_divide(img_coords, 0.2)
198
+
199
+ # Remove the reduandant coords
200
+ unique_gt_coords, gt_inverse_indices = np.unique(gt_quant_coords, axis=0, return_inverse=True)
201
+ unique_img_coords, img_inverse_indices = np.unique(img_quant_coords, axis=0, return_inverse=True)
202
+
203
+ # Match the coords in gt_coords to img_corrds
204
+ def find_loc(vec):
205
+ obj = np.empty((), dtype=object)
206
+ out = np.where((unique_img_coords == vec).all(1))[0]
207
+ obj[()] = out
208
+ return obj
209
+
210
+ gt_2_img_map = np.apply_along_axis(find_loc, 1, unique_gt_coords)
211
+ # Since some places are empty, using the simple round interplation
212
+ gt_2_img_map_filled = []
213
+ start_id = np.array([0])
214
+ for loc in gt_2_img_map:
215
+ if not np.any(loc):
216
+ loc = start_id
217
+ else:
218
+ start_id = loc
219
+ gt_2_img_map_filled.append(int(loc))
220
+
221
+ mean_colors = []
222
+ for i in range(unique_img_coords.shape[0]):
223
+ valid_locs = np.where(img_inverse_indices == i)
224
+ mean_f = torch.mean(c_data[valid_locs], axis=0)
225
+ # mean_f, _ = torch.mode(c_data[valid_locs], dim=0)
226
+ mean_colors.append(mean_f.unsqueeze(0))
227
+ mean_colors = torch.cat(mean_colors)
228
+ # Project the averaged features back to groundtruth point clouds
229
+ img_2_gt_colors = mean_colors[gt_2_img_map_filled]
230
+ projected_gt_colors = img_2_gt_colors[gt_inverse_indices]
231
+ print("convert projected points to GT points successfully...")
232
+
233
+ return projected_gt_colors
234
+
235
+ def render_point_cloud(self, data, color):
236
+ data_copy = copy.copy(data)
237
+ uint_color = torch.round(torch.tensor(color) * 255).to(torch.uint8)
238
+ data_copy['red'] = uint_color[:, 0]
239
+ data_copy['green'] = uint_color[:, 1]
240
+ data_copy['blue'] = uint_color[:, 2]
241
+ return data_copy
242
+
243
+ def run_with_coord(self, point, granularity):
244
+ x_data, y_data, z_data, c_data = [], [], [], []
245
+
246
+ plydata = PlyData.read(f"./scannet_data/{self.scene_name}/{self.scene_name}.ply")
247
+ data = plydata.elements[0].data
248
+
249
+ # gt_coords stand for the groudtruth point clouds coordinates
250
+ gt_coords = np.array([data['x'], data['y'], data['z']], dtype=np.float32).T
251
+ gt_color = np.array([data['red'], data['green'], data['blue']], dtype=np.float32).T
252
+ blank_color = np.full(gt_color.shape, 0.5)
253
+
254
+ select_index, select_points = find_closest_point(point, gt_coords, num=10)
255
+ point_select_color = blank_color.copy()
256
+ point_select_color[select_index] = [1.0, 0, 0]
257
+ data_point_select = self.render_point_cloud(data, point_select_color)
258
+
259
+ valid_img_ids, valid_points, rgb_img_w_points = self.project_3D_to_images(select_points)
260
+ mask_colors, rgb_img_w_masks = self.process_img_w_sam(valid_img_ids, valid_points, granularity)
261
+ x_data, y_data, z_data, c_data = self.project_mask_to_3d(mask_colors)
262
+ projected_gt_colors = self.match_projected_point_to_gt_point(x_data, y_data, z_data, c_data, gt_coords)
263
+
264
+ data_final = self.render_point_cloud(data, projected_gt_colors)
265
+
266
+ return data_point_select, rgb_img_w_points, rgb_img_w_masks, data_final
sam_vit_b_01ec64.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec2df62732614e57411cdcf32a23ffdf28910380d03139ee0f4fcbe91eb8c912
3
+ size 375042383
scannet_data/scene0000_00/color/0.jpg ADDED
scannet_data/scene0000_00/color/100.jpg ADDED
scannet_data/scene0000_00/color/1000.jpg ADDED
scannet_data/scene0000_00/color/1020.jpg ADDED
scannet_data/scene0000_00/color/1040.jpg ADDED
scannet_data/scene0000_00/color/1060.jpg ADDED
scannet_data/scene0000_00/color/1080.jpg ADDED
scannet_data/scene0000_00/color/1100.jpg ADDED
scannet_data/scene0000_00/color/1120.jpg ADDED
scannet_data/scene0000_00/color/1140.jpg ADDED
scannet_data/scene0000_00/color/1160.jpg ADDED
scannet_data/scene0000_00/color/1180.jpg ADDED
scannet_data/scene0000_00/color/120.jpg ADDED
scannet_data/scene0000_00/color/1200.jpg ADDED
scannet_data/scene0000_00/color/1220.jpg ADDED
scannet_data/scene0000_00/color/1240.jpg ADDED
scannet_data/scene0000_00/color/1260.jpg ADDED
scannet_data/scene0000_00/color/1280.jpg ADDED
scannet_data/scene0000_00/color/1300.jpg ADDED
scannet_data/scene0000_00/color/1320.jpg ADDED
scannet_data/scene0000_00/color/1340.jpg ADDED
scannet_data/scene0000_00/color/1360.jpg ADDED
scannet_data/scene0000_00/color/1380.jpg ADDED
scannet_data/scene0000_00/color/140.jpg ADDED
scannet_data/scene0000_00/color/1400.jpg ADDED
scannet_data/scene0000_00/color/1420.jpg ADDED
scannet_data/scene0000_00/color/1440.jpg ADDED
scannet_data/scene0000_00/color/1460.jpg ADDED
scannet_data/scene0000_00/color/1480.jpg ADDED
scannet_data/scene0000_00/color/1500.jpg ADDED
scannet_data/scene0000_00/color/1520.jpg ADDED
scannet_data/scene0000_00/color/1540.jpg ADDED
scannet_data/scene0000_00/color/1560.jpg ADDED
scannet_data/scene0000_00/color/1580.jpg ADDED
scannet_data/scene0000_00/color/160.jpg ADDED
scannet_data/scene0000_00/color/1600.jpg ADDED
scannet_data/scene0000_00/color/1620.jpg ADDED
scannet_data/scene0000_00/color/1640.jpg ADDED
scannet_data/scene0000_00/color/1660.jpg ADDED
scannet_data/scene0000_00/color/1680.jpg ADDED
scannet_data/scene0000_00/color/1700.jpg ADDED
scannet_data/scene0000_00/color/1720.jpg ADDED
scannet_data/scene0000_00/color/1740.jpg ADDED
scannet_data/scene0000_00/color/1760.jpg ADDED
scannet_data/scene0000_00/color/1780.jpg ADDED
scannet_data/scene0000_00/color/180.jpg ADDED