JeetSuthar commited on
Commit
e157acb
·
verified ·
1 Parent(s): 643461e

optimized funcion for cpu usages

Browse files
Files changed (1) hide show
  1. app.py +4 -3
app.py CHANGED
@@ -9,7 +9,7 @@ app = FastAPI()
9
  # Load the DeepSeek model and tokenizer
10
  MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct"
11
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
- model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float16).to("cpu") # Use "cuda" if available
13
 
14
 
15
  class ChatRequest(BaseModel):
@@ -19,9 +19,10 @@ def generate_sql_query(user_input: str) -> str:
19
  """
20
  Generate an SQL query from a natural language query using the DeepSeek model.
21
  """
22
- inputs = tokenizer(user_input, return_tensors="pt")
23
- outputs = model.generate(**inputs, max_length=400)
24
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
 
25
  return sql_query
26
 
27
 
 
9
  # Load the DeepSeek model and tokenizer
10
  MODEL_NAME = "deepseek-ai/deepseek-coder-1.3b-instruct"
11
  tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
12
+ model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, torch_dtype=torch.float32).to("cpu")
13
 
14
 
15
  class ChatRequest(BaseModel):
 
19
  """
20
  Generate an SQL query from a natural language query using the DeepSeek model.
21
  """
22
+ inputs = tokenizer(user_input, return_tensors="pt", padding="longest", truncation=True)
23
+ outputs = model.generate(**inputs, max_length=400, do_sample=False, num_beams=1)
24
  sql_query = tokenizer.decode(outputs[0], skip_special_tokens=True)
25
+
26
  return sql_query
27
 
28