Spaces:
Runtime error
Runtime error
| import streamlit as st | |
| import streamlit.components.v1 as com | |
| #import libraries | |
| from transformers import AutoModelForSequenceClassification,AutoTokenizer, AutoConfig | |
| import numpy as np | |
| #convert logits to probabilities | |
| from scipy.special import softmax | |
| #import the model | |
| tokenizer = AutoTokenizer.from_pretrained('bert-base-cased') | |
| model_path = f"Junr-syl/tweet_sentiments_analysis" | |
| config = AutoConfig.from_pretrained(model_path) | |
| model = AutoModelForSequenceClassification.from_pretrained(model_path) | |
| #Set the page configs | |
| st.set_page_config(page_title='Sentiments Analysis',page_icon='π',layout='wide') | |
| #welcome Animation | |
| com.iframe("https://embed.lottiefiles.com/animation/149093") | |
| st.markdown('<h1> Tweet Sentiments </h1>',unsafe_allow_html=True) | |
| #Create a form to take user inputs | |
| with st.form(key='tweet',clear_on_submit=True): | |
| text=st.text_area('Copy and paste a tweet or type one',placeholder='I find it quite amusing how people ignore the effects of not taking the vaccine') | |
| submit=st.form_submit_button('submit') | |
| #create columns to show outputs | |
| col1,col2,col3=st.columns(3) | |
| col1.title('Sentiment Emoji') | |
| col2.title('How this user feels about the vaccine') | |
| col3.title('Confidence of this prediction') | |
| if submit: | |
| print('submitted') | |
| #pass text to preprocessor | |
| def preprocess(text): | |
| #initiate an empty list | |
| new_text = [] | |
| #split text by space | |
| for t in text.split(" "): | |
| #set username to @user | |
| t = '@user' if t.startswith('@') and len(t) > 1 else t | |
| #set tweet source to http | |
| t = 'http' if t.startswith('http') else t | |
| #store text in the list | |
| new_text.append(t) | |
| #change text from list back to string | |
| return " ".join(new_text) | |
| #pass text to model | |
| #change label id | |
| config.id2label = {0: 'NEGATIVE', 1: 'NEUTRAL', 2: 'POSITIVE'} | |
| text = preprocess(text) | |
| # PyTorch-based models | |
| encoded_input = tokenizer(text, return_tensors='pt') | |
| output = model(**encoded_input) | |
| scores = output[0][0].detach().numpy() | |
| scores = softmax(scores) | |
| #Process scores | |
| ranking = np.argsort(scores) | |
| ranking = ranking[::-1] | |
| l = config.id2label[ranking[0]] | |
| s = scores[ranking[0]] | |
| #output | |
| if l=='NEGATIVE': | |
| with col1: | |
| com.iframe("https://embed.lottiefiles.com/animation/125694") | |
| col2.write('Negative') | |
| col3.write(f'{s}%') | |
| elif l=='POSITIVE': | |
| with col1: | |
| com.iframe("https://embed.lottiefiles.com/animation/148485") | |
| col2.write('Positive') | |
| col3.write(f'{s}%') | |
| else: | |
| with col1: | |
| com.iframe("https://embed.lottiefiles.com/animation/136052") | |
| col2.write('Neutral') | |
| col3.write(f'{s}%') | |