Spaces:
Sleeping
Sleeping
# %%capture | |
# # Run this cell in your local environment to install necessary packages | |
# # Added chromadb, removed scikit-learn (numpy might still be needed by other libs) | |
# !pip install gradio langchain langchain-community sentence-transformers ctransformers torch accelerate bitsandbytes chromadb transformers[sentencepiece] | |
import gradio as gr | |
from langchain_community.vectorstores import Chroma # ADDED | |
from langchain_community.embeddings import HuggingFaceEmbeddings | |
from langchain_community.llms import CTransformers | |
from langchain.schema import Document | |
from langchain.prompts import PromptTemplate | |
import json | |
import os | |
# REMOVED: import numpy as np | |
import re | |
# REMOVED: from sklearn.metrics.pairwise import cosine_similarity | |
import chromadb # ADDED for client check | |
from typing import List, Dict, Any, Optional | |
from huggingface_hub import hf_hub_download # Import the downloader | |
# --- Constants --- | |
MODEL_REPO = "TheBloke/zephyr-7B-beta-GGUF" | |
MODEL_FILE = "zephyr-7b-beta.Q4_K_M.gguf" | |
# Define a path within the persistent storage for the model | |
# Using os.environ.get('HF_HOME', '/data') ensures it uses HF_HOME if set, | |
# otherwise defaults to /data. You might want a specific models subdir. | |
# Let's create a dedicated model path within /data: | |
MODEL_DIR = "/data/models" # Store models in /data/models | |
LOCAL_MODEL_PATH = os.path.join(MODEL_DIR, MODEL_FILE) | |
# --- Function to Download Model (Runtime Check) --- | |
def download_model_if_needed(): | |
"""Checks if model exists in persistent storage, downloads if not.""" | |
print(f"Checking for model file at: {LOCAL_MODEL_PATH}") | |
if not os.path.exists(LOCAL_MODEL_PATH): | |
print(f"Model not found locally. Downloading from {MODEL_REPO}...") | |
try: | |
# Create the directory if it doesn't exist | |
os.makedirs(MODEL_DIR, exist_ok=True) | |
# Use hf_hub_download for robust downloading & caching (respects HF_HOME) | |
# We specify local_dir to force it into our /data structure, | |
# and local_dir_use_symlinks=False to avoid symlinks if that causes issues. | |
# If you set HF_HOME=/data in Dockerfile, it *should* cache there by default, | |
# but explicitly downloading to a specific path within /data is safer. | |
hf_hub_download( | |
repo_id=MODEL_REPO, | |
filename=MODEL_FILE, | |
local_dir=MODEL_DIR, # Download directly into this folder | |
local_dir_use_symlinks=False, # Avoid symlinks, copy directly | |
# cache_dir=os.environ.get('HF_HOME') # Optional: force cache dir if needed | |
) | |
# Verify download | |
if os.path.exists(LOCAL_MODEL_PATH): | |
print(f"Model downloaded successfully to {LOCAL_MODEL_PATH}") | |
else: | |
print(f"Download attempted but file still not found at {LOCAL_MODEL_PATH}. Check download path and permissions.") | |
# Consider raising an error or exiting if download fails critically | |
raise FileNotFoundError("Model download failed.") | |
except Exception as e: | |
print(f"Error downloading model: {e}") | |
# Handle error appropriately - maybe exit or try fallback | |
raise # Re-raise the exception to stop execution if model is critical | |
else: | |
print("Model file already exists locally.") | |
# --- Call the download function at the start --- | |
try: | |
download_model_if_needed() | |
except Exception as e: | |
print(f"Failed to ensure model availability: {e}") | |
exit() # Exit if model download fails and is required | |
# --- Load Structured Resume Data --- | |
resume_filename = "resume_corrected.json" # Using the revamped JSON | |
resume_data = {} | |
try: | |
with open(resume_filename, 'r', encoding='utf-8') as f: | |
resume_data = json.load(f) | |
print(f"Loaded structured resume data from {resume_filename}") | |
if not isinstance(resume_data, dict): | |
print(f"Error: Content of {resume_filename} is not a dictionary.") | |
resume_data = {} | |
except FileNotFoundError: | |
print(f"Error: Resume data file '{resume_filename}' not found.") | |
print("Ensure the revamped JSON file is present.") | |
exit() | |
except json.JSONDecodeError as e: | |
print(f"Error decoding JSON from {resume_filename}: {e}") | |
exit() | |
except Exception as e: | |
print(f"An unexpected error occurred loading resume data: {e}") | |
exit() | |
if not resume_data: | |
print("Error: No resume data loaded. Exiting.") | |
exit() | |
# --- Function to Sanitize Metadata --- | |
# --- Helper Function to Sanitize Metadata --- | |
def sanitize_metadata(metadata_dict: Dict[str, Any]) -> Dict[str, Any]: | |
"""Ensures metadata values are compatible types for ChromaDB.""" | |
sanitized = {} | |
if not isinstance(metadata_dict, dict): | |
return {} # Return empty if input is not a dict | |
for k, v in metadata_dict.items(): | |
# Ensure key is string | |
key_str = str(k) | |
if isinstance(v, (str, int, float, bool)): | |
sanitized[key_str] = v | |
elif isinstance(v, (list, set)): # Convert lists/sets to string | |
sanitized[key_str] = "; ".join(map(str, v)) | |
elif v is None: | |
sanitized[key_str] = "N/A" # Or "" | |
else: | |
sanitized[key_str] = str(v) # Convert other types to string | |
return sanitized | |
# --- Create Granular LangChain Documents from Structured Data --- | |
# (This entire section remains unchanged as requested) | |
structured_docs = [] | |
doc_id_counter = 0 | |
print("Processing structured data into granular documents...") | |
# --- Start of Unchanged Document Creation Logic --- | |
contact_info = resume_data.get("CONTACT INFO", {}) | |
if contact_info: | |
contact_text = f"Contact Info: Phone: {contact_info.get('phone', 'N/A')}, Location: {contact_info.get('location', 'N/A')}, Email: {contact_info.get('email', 'N/A')}, GitHub: {contact_info.get('github_user', 'N/A')}, LinkedIn: {contact_info.get('linkedin_user', 'N/A')}" | |
metadata = {"category": "CONTACT INFO", "source_doc_id": str(doc_id_counter)} # Ensure ID is string | |
structured_docs.append(Document(page_content=contact_text, metadata=metadata)) | |
doc_id_counter += 1 | |
education_list = resume_data.get("EDUCATION", []) | |
for i, entry in enumerate(education_list): | |
edu_text = f"Education: {entry.get('degree', '')} in {entry.get('major', '')} from {entry.get('institution', '')} ({entry.get('dates', '')})." | |
metadata = { | |
"category": "EDUCATION", | |
"institution": entry.get('institution', 'N/A'), # Ensure N/A or actual string | |
"degree": entry.get('degree', 'N/A'), | |
"major": entry.get('major', 'N/A'), | |
"dates": entry.get('dates', 'N/A'), | |
"item_index": i, | |
"source_doc_id": str(doc_id_counter) # Ensure ID is string | |
} | |
# Ensure all metadata values are strings, ints, floats, or bools | |
metadata = {k: (v if isinstance(v, (str, int, float, bool)) else str(v)) for k, v in metadata.items()} | |
structured_docs.append(Document(page_content=edu_text.strip(), metadata=metadata)) | |
doc_id_counter += 1 | |
tech_strengths = resume_data.get("TECHNICAL STRENGTHS", {}) | |
for sub_category, skills in tech_strengths.items(): | |
if isinstance(skills, list) and skills: | |
skills_text = f"Technical Strengths - {sub_category}: {', '.join(skills)}" | |
metadata = {"category": "TECHNICAL STRENGTHS", "sub_category": sub_category, "source_doc_id": str(doc_id_counter)} | |
metadata = {k: (v if isinstance(v, (str, int, float, bool)) else str(v)) for k, v in metadata.items()} | |
structured_docs.append(Document(page_content=skills_text, metadata=metadata)) | |
doc_id_counter += 1 | |
# Process WORK EXPERIENCE (Using relevant_skills) | |
work_list = resume_data.get("WORK EXPERIENCE", []) | |
for i, entry in enumerate(work_list): | |
title = entry.get('title', 'N/A') | |
org = entry.get('organization', 'N/A') | |
dates = entry.get('dates', 'N/A') | |
points = entry.get('description_points', []) | |
# --- MODIFICATION START --- | |
skills_list = entry.get('relevant_skills', []) # Get pre-associated skills | |
skills_str = "; ".join(skills_list) if skills_list else "N/A" | |
# --- MODIFICATION END --- | |
entry_context = f"Work Experience: {title} at {org} ({dates})" | |
if not points: | |
base_metadata = { | |
"category": "WORK EXPERIENCE", "title": title, "organization": org, | |
"dates": dates, "item_index": i, "point_index": -1, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
doc_id_counter += 1 | |
else: | |
# Create one doc for the header/context info | |
base_metadata = { | |
"category": "WORK EXPERIENCE", "title": title, "organization": org, | |
"dates": dates, "item_index": i, "point_index": -1, # Indicate context doc | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
# Create separate docs for each point, inheriting skills | |
for j, point in enumerate(points): | |
point_text = f"{entry_context}:\n- {point.strip()}" | |
point_metadata = { | |
"category": "WORK EXPERIENCE", "title": title, "organization": org, | |
"dates": dates, "item_index": i, "point_index": j, | |
"source_doc_id": str(doc_id_counter), # Link back to original entry ID | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata))) | |
doc_id_counter += 1 # Increment ID only once per WORK EXPERIENCE entry | |
# Process PROJECTS (Using technologies field, mapping to 'skills' metadata key) | |
project_list = resume_data.get("PROJECTS", []) | |
for i, entry in enumerate(project_list): | |
name = entry.get('name', 'Unnamed Project') | |
# --- MODIFICATION START --- | |
# Use 'technologies' from JSON for projects, but map to 'skills' metadata key | |
skills_list = entry.get('technologies', []) | |
skills_str = "; ".join(skills_list) if skills_list else "N/A" | |
# --- MODIFICATION END --- | |
points = entry.get('description_points', []) | |
# Include skills string in context text as well for embedding | |
entry_context = f"Project: {name} (Skills: {skills_str if skills_list else 'N/A'})" | |
if not points: | |
base_metadata = { | |
"category": "PROJECTS", "name": name, | |
"item_index": i, "point_index": -1, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED/RENAMED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
doc_id_counter += 1 | |
else: | |
# Create one doc for the header/context info | |
base_metadata = { | |
"category": "PROJECTS", "name": name, | |
"item_index": i, "point_index": -1, # Indicate context doc | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED/RENAMED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
# Create separate docs for each point, inheriting skills | |
for j, point in enumerate(points): | |
point_text = f"{entry_context}:\n- {point.strip()}" | |
point_metadata = { | |
"category": "PROJECTS", "name": name, | |
"item_index": i, "point_index": j, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED/RENAMED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata))) | |
doc_id_counter += 1 # Increment ID only once per PROJECT entry | |
# Process ONLINE CERTIFICATIONS (Using relevant_skills) | |
cert_list = resume_data.get("ONLINE CERTIFICATIONS", []) | |
for i, entry in enumerate(cert_list): | |
name = entry.get('name', 'N/A') | |
issuer = entry.get('issuer', 'N/A') | |
date = entry.get('date', 'N/A') | |
points = entry.get('description_points', []) | |
# --- MODIFICATION START --- | |
skills_list = entry.get('relevant_skills', []) # Get pre-associated skills | |
skills_str = "; ".join(skills_list) if skills_list else "N/A" | |
# --- MODIFICATION END --- | |
entry_context = f"Certification: {name} from {issuer} ({date})" | |
if not points: | |
base_metadata = { | |
"category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer, | |
"date": date, "item_index": i, "point_index": -1, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
doc_id_counter += 1 | |
else: | |
# Create one doc for the header/context info | |
base_metadata = { | |
"category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer, | |
"date": date, "item_index": i, "point_index": -1, # Indicate context doc | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
# Create separate docs for each point, inheriting skills | |
for j, point in enumerate(points): | |
if point.strip().endswith(':'): continue | |
point_text = f"{entry_context}:\n- {point.strip().lstrip('β- ')}" | |
point_metadata = { | |
"category": "ONLINE CERTIFICATIONS", "name": name, "issuer": issuer, | |
"date": date, "item_index": i, "point_index": j, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata))) | |
doc_id_counter += 1 # Increment ID only once per CERTIFICATION entry | |
# Process COURSES (Using relevant_skills) | |
course_list = resume_data.get("COURSES", []) | |
for i, entry in enumerate(course_list): | |
code = entry.get('code', '') | |
name = entry.get('name', 'N/A') | |
inst = entry.get('institution', 'N/A') | |
term = entry.get('term', 'N/A') | |
points = entry.get('description_points', []) | |
# --- MODIFICATION START --- | |
skills_list = entry.get('relevant_skills', []) # Get pre-associated skills | |
skills_str = "; ".join(skills_list) if skills_list else "N/A" | |
# --- MODIFICATION END --- | |
entry_context = f"Course: {code}: {name} at {inst} ({term})" | |
if not points: | |
base_metadata = { | |
"category": "COURSES", "code": code, "name": name, "institution": inst, | |
"term": term, "item_index": i, "point_index": -1, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
doc_id_counter += 1 | |
else: | |
# Create one doc for the header/context info | |
base_metadata = { | |
"category": "COURSES", "code": code, "name": name, "institution": inst, | |
"term": term, "item_index": i, "point_index": -1, # Indicate context doc | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
# Create separate docs for each point, inheriting skills | |
for j, point in enumerate(points): | |
point_text = f"{entry_context}:\n- {point.strip()}" | |
point_metadata = { | |
"category": "COURSES", "code": code, "name": name, "institution": inst, | |
"term": term, "item_index": i, "point_index": j, | |
"source_doc_id": str(doc_id_counter), | |
"skills": skills_str # --- ADDED SKILLS --- | |
} | |
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata))) | |
doc_id_counter += 1 # Increment ID only once per COURSE entry | |
# Process EXTRACURRICULAR ACTIVITIES (No skills assumed here) | |
extra_list = resume_data.get("EXTRACURRICULAR ACTIVITIES", []) | |
for i, entry in enumerate(extra_list): | |
org = entry.get('organization', 'N/A') | |
points = entry.get('description_points', []) | |
entry_context = f"Extracurricular: {org}" | |
if not points: | |
metadata = { | |
"category": "EXTRACURRICULAR ACTIVITIES", "organization": org, | |
"item_index": i, "point_index": -1, | |
"source_doc_id": str(doc_id_counter) | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(metadata))) | |
doc_id_counter += 1 | |
else: | |
# Create one doc for the header/context info | |
base_metadata = { | |
"category": "EXTRACURRICULAR ACTIVITIES", "organization": org, | |
"item_index": i, "point_index": -1, # Indicate context doc | |
"source_doc_id": str(doc_id_counter) | |
} | |
structured_docs.append(Document(page_content=entry_context, metadata=sanitize_metadata(base_metadata))) | |
# Create separate docs for each point | |
for j, point in enumerate(points): | |
point_text = f"{entry_context}:\n- {point.strip()}" | |
point_metadata = { | |
"category": "EXTRACURRICULAR ACTIVITIES", "organization": org, | |
"item_index": i, "point_index": j, | |
"source_doc_id": str(doc_id_counter) | |
} | |
structured_docs.append(Document(page_content=point_text, metadata=sanitize_metadata(point_metadata))) | |
doc_id_counter += 1 | |
if not structured_docs: | |
print("Error: Failed to create any documents from the resume data. Check processing logic.") | |
exit() | |
print(f"Created {len(structured_docs)} granular Document objects.") | |
# Optional: Print a sample document | |
print("\nSample Document:") | |
print(structured_docs[0]) # Print first doc as example | |
# --- Embeddings Model --- | |
print("Initializing embeddings model...") | |
embeddings_model_name = "sentence-transformers/multi-qa-mpnet-base-dot-v1" | |
embeddings = HuggingFaceEmbeddings(model_name=embeddings_model_name) | |
print(f"Embeddings model '{embeddings_model_name}' initialized.") | |
# --- ChromaDB Vector Store Setup --- | |
CHROMA_PERSIST_DIR = "/data/cv_chroma_db_structured" # Use a different dir if needed | |
CHROMA_COLLECTION_NAME = "cv_structured_collection" | |
print(f"Connecting to ChromaDB client at '{CHROMA_PERSIST_DIR}'...") | |
client = chromadb.PersistentClient(path=CHROMA_PERSIST_DIR) | |
vectorstore = None | |
collection_exists = False | |
collection_count = 0 | |
try: | |
existing_collections = [col.name for col in client.list_collections()] | |
if CHROMA_COLLECTION_NAME in existing_collections: | |
collection = client.get_collection(name=CHROMA_COLLECTION_NAME) | |
collection_count = collection.count() | |
if collection_count > 0: | |
collection_exists = True | |
print(f"Collection '{CHROMA_COLLECTION_NAME}' already exists with {collection_count} documents.") | |
else: | |
print(f"Collection '{CHROMA_COLLECTION_NAME}' exists but is empty. Will attempt to create/populate.") | |
collection_exists = False | |
try: | |
client.delete_collection(name=CHROMA_COLLECTION_NAME) | |
print(f"Deleted empty collection '{CHROMA_COLLECTION_NAME}'.") | |
except Exception as delete_e: | |
print(f"Warning: Could not delete potentially empty collection '{CHROMA_COLLECTION_NAME}': {delete_e}") | |
else: print(f"Collection '{CHROMA_COLLECTION_NAME}' does not exist. Will create.") | |
except Exception as e: | |
print(f"Error checking/preparing ChromaDB collection: {e}. Assuming need to create.") | |
collection_exists = False | |
# Populate Vector Store ONLY IF NEEDED | |
if not collection_exists: | |
print("\nPopulating ChromaDB vector store (this may take a moment)...") | |
if not structured_docs: | |
print("Error: No documents to add to vector store.") | |
exit() | |
try: | |
vectorstore = Chroma.from_documents( | |
documents=structured_docs, | |
embedding=embeddings, # Use the initialized embeddings function | |
collection_name=CHROMA_COLLECTION_NAME, | |
persist_directory=CHROMA_PERSIST_DIR | |
) | |
vectorstore.persist() | |
print("Vector store populated and persisted.") | |
except Exception as e: | |
print(f"\n--- Error during ChromaDB storage: {e} ---") | |
print("Check metadata types (should be str, int, float, bool).") | |
exit() | |
else: # Load existing store | |
print(f"\nLoading existing vector store from '{CHROMA_PERSIST_DIR}'...") | |
try: | |
vectorstore = Chroma( | |
persist_directory=CHROMA_PERSIST_DIR, | |
embedding_function=embeddings, | |
collection_name=CHROMA_COLLECTION_NAME | |
) | |
print("Existing vector store loaded successfully.") | |
except Exception as e: | |
print(f"\n--- Error loading existing ChromaDB store: {e} ---") | |
exit() | |
if not vectorstore: | |
print("Error: Vector store could not be loaded or created. Exiting.") | |
exit() | |
# --- Load Fine-tuned CTransformers model --- | |
# (This part remains unchanged) | |
# model_path_gguf = "/data/zephyr-7b-beta.Q4_K_M.gguf" # MAKE SURE THIS PATH IS CORRECT | |
print(f"Initializing Fine-Tuned CTransformers LLM from: {LOCAL_MODEL_PATH}") | |
config = { | |
'max_new_tokens': 512, 'temperature': 0.1, 'context_length': 2048, | |
'gpu_layers': 0, 'stream': False, 'threads': -1, 'top_k': 40, | |
'top_p': 0.9, 'repetition_penalty': 1.1 | |
} | |
llm = None | |
if not os.path.exists(LOCAL_MODEL_PATH): | |
print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
print(f"ERROR: GGUF Model file not found at: {LOCAL_MODEL_PATH}") | |
print(f"Please download the model and place it at the correct path, or update model_path_gguf.") | |
print(f"!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!") | |
print("LLM initialization skipped.") | |
else: | |
try: | |
llm = CTransformers(model=LOCAL_MODEL_PATH, model_type='llama', config=config) | |
print("Fine-Tuned CTransformers LLM initialized.") | |
except Exception as e: | |
print(f"Error initializing CTransformers: {e}") | |
print("LLM initialization failed.") | |
# Decide if you want to exit or continue without LLM | |
# exit() | |
# --- RAG Setup --- | |
def format_docs(docs): | |
# Expects a list of Document objects | |
return "\n\n".join(doc.page_content for doc in docs if isinstance(doc, Document)) | |
# --- RAG Function using ChromaDB --- | |
def answer_resume_question(user_question): | |
"""Answers questions using RAG with ChromaDB similarity search.""" | |
k_limit = 5 # Number of documents to retrieve | |
print(f"\nReceived question: {user_question}") | |
if not vectorstore: | |
return "Error: Vector store is not available." | |
print(f"Performing similarity search (top {k_limit})...") | |
try: | |
# 1. Retrieve documents using ChromaDB similarity search | |
# Use similarity_search_with_score to get scores if needed for logging/debugging | |
# results_with_scores = vectorstore.similarity_search_with_score(user_question, k=k_limit) | |
# retrieved_docs = [doc for doc, score in results_with_scores] | |
# similarity_scores = [score for doc, score in results_with_scores] | |
# Or simpler retrieval if scores aren't needed immediately: | |
retrieved_docs = vectorstore.similarity_search(user_question, k=k_limit) | |
if not retrieved_docs: | |
print("No relevant documents found via similarity search.") | |
# Optionally add fallback logic here if needed | |
return "I couldn't find relevant information in the CV for your query." | |
print(f"Retrieved {len(retrieved_docs)} documents.") | |
# Log details of top retrieved docs | |
for i, doc in enumerate(retrieved_docs): | |
# score = similarity_scores[i] # Uncomment if using similarity_search_with_score | |
print(f" -> Top {i+1} Doc (Cat: {doc.metadata.get('category')}, SrcID: {doc.metadata.get('source_doc_id')}) Content: {doc.page_content.replace(os.linesep, ' ')}...") | |
# 2. Combine content | |
combined_context = format_docs(retrieved_docs) # Use the existing format_docs | |
# 3. Check if LLM is available | |
if not llm: | |
return "LLM is not available, cannot generate a final answer. Relevant context found:\n\n" + combined_context | |
# 4. Final Answer Generation Step | |
qa_template = """ | |
Based *only* on the following context from Jaynil Jaiswal's CV, provide a detailed and comprehensive answer to the question. | |
If the context does not contain the information needed to answer the question fully, please state that clearly using phrases like 'Based on the context provided, I cannot answer...' or 'The provided context does not contain information about...'. | |
Do not make up any information or provide generic non-answers. You are free to selectively use sources from the context to answer the question. | |
Context: | |
{context} | |
Question: {question} | |
Answer:""" | |
qa_prompt = PromptTemplate.from_template(qa_template) | |
formatted_qa_prompt = qa_prompt.format(context=combined_context, question=user_question) | |
print("Generating final answer...") | |
answer = llm.invoke(formatted_qa_prompt).strip() | |
print(f"LLM Response: {answer}") | |
# Optional: Add the insufficient answer check here if desired | |
# if is_answer_insufficient(answer): | |
# print("LLM answer seems insufficient...") | |
# # Return fallback or the potentially insufficient answer based on preference | |
# return FALLBACK_MESSAGE # Assuming FALLBACK_MESSAGE is defined | |
except Exception as e: | |
print(f"Error during RAG execution: {e}") | |
answer = "Sorry, I encountered an error while processing your question." | |
return answer | |
# --- End Modification --- | |
# --- Gradio Interface --- | |
# (This part remains unchanged) | |
iface = gr.Interface( | |
fn=answer_resume_question, | |
inputs=gr.Textbox(label="π¬ Ask about my CV", placeholder="E.g. What was done at Oracle? List my projects.", lines=2), | |
outputs=gr.Textbox(label="π‘ Answer", lines=8), | |
title="π CV RAG Chatbot (ChromaDB + Granular Docs)", | |
description="Ask questions about the CV! (Uses local GGUF model via CTransformers)", | |
theme="soft", | |
allow_flagging="never" | |
) | |
# --- Run Gradio --- | |
if __name__ == "__main__": | |
print("Launching Gradio interface...") | |
# Make sure LLM was loaded successfully before launching | |
if vectorstore and llm: | |
iface.launch(server_name="0.0.0.0", server_port=7860) | |
elif not vectorstore: | |
print("Could not launch: Vector store failed to load.") | |
else: # LLM failed | |
print("Could not launch: LLM failed to load. Check model path and dependencies.") |