Jayesh13 commited on
Commit
e000d00
Β·
verified Β·
1 Parent(s): e1caa91

Upload 2 files

Browse files
Files changed (2) hide show
  1. app (2).py +411 -0
  2. requirements.txt +8 -0
app (2).py ADDED
@@ -0,0 +1,411 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ from dotenv import load_dotenv
3
+ from pymongo import MongoClient
4
+ # os.system("pip install streamlit pandas xlsxwriter openpyxl pymongo matplotlib seaborn")
5
+
6
+ import streamlit as st
7
+ import pandas as pd
8
+ import xlsxwriter
9
+ from io import BytesIO
10
+ from collections import defaultdict
11
+ import hashlib
12
+ import matplotlib.pyplot as plt
13
+ import seaborn as sns
14
+
15
+ # load_dotenv()
16
+
17
+ # Get MongoDB URI from environment
18
+ mongo_uri = os.environ.get("MONGODB_URI")
19
+
20
+ # MongoDB Setup
21
+ try:
22
+ from pymongo import MongoClient
23
+ client = MongoClient(mongo_uri)
24
+ db = client['BTP_DB']
25
+ results_collection = db['protein_results']
26
+ except:
27
+ results_collection = None
28
+
29
+ # Utility Functions
30
+ def is_homo_repeat(s):
31
+ return all(c == s[0] for c in s)
32
+
33
+ def hash_sequence(sequence):
34
+ return hashlib.md5(sequence.encode()).hexdigest()
35
+
36
+ @st.cache_data(show_spinner=False)
37
+ def fragment_protein_sequence(sequence, max_length=1000):
38
+ return [sequence[i:i+max_length] for i in range(0, len(sequence), max_length)]
39
+
40
+ def find_homorepeats(protein):
41
+ n = len(protein)
42
+ freq = defaultdict(int)
43
+ i = 0
44
+ while i < n:
45
+ curr = protein[i]
46
+ repeat = ""
47
+ while i < n and curr == protein[i]:
48
+ repeat += protein[i]
49
+ i += 1
50
+ if len(repeat) > 1:
51
+ freq[repeat] += 1
52
+ return freq
53
+
54
+ def find_hetero_amino_acid_repeats(sequence):
55
+ repeat_counts = defaultdict(int)
56
+ for length in range(2, len(sequence) + 1):
57
+ for i in range(len(sequence) - length + 1):
58
+ substring = sequence[i:i+length]
59
+ repeat_counts[substring] += 1
60
+ return {k: v for k, v in repeat_counts.items() if v > 1}
61
+
62
+ def check_boundary_repeats(fragments, final_repeats, overlap=50):
63
+ for i in range(len(fragments) - 1):
64
+ left_overlap = fragments[i][-overlap:]
65
+ right_overlap = fragments[i + 1][:overlap]
66
+ overlap_region = left_overlap + right_overlap
67
+ boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
68
+ for substring, count in boundary_repeats.items():
69
+ if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
70
+ final_repeats[substring] += count
71
+ return final_repeats
72
+
73
+ def find_new_boundary_repeats(fragments, final_repeats, overlap=50):
74
+ new_repeats = defaultdict(int)
75
+ for i in range(len(fragments) - 1):
76
+ left_overlap = fragments[i][-overlap:]
77
+ right_overlap = fragments[i + 1][:overlap]
78
+ overlap_region = left_overlap + right_overlap
79
+ boundary_repeats = find_hetero_amino_acid_repeats(overlap_region)
80
+ for substring, count in boundary_repeats.items():
81
+ if any(aa in left_overlap for aa in substring) and any(aa in right_overlap for aa in substring):
82
+ if substring not in final_repeats:
83
+ new_repeats[substring] += count
84
+ return new_repeats
85
+
86
+ def get_or_process_sequence(sequence, analysis_type, overlap=50):
87
+ if results_collection is None:
88
+ return {}
89
+ hash_input = f"{sequence}_{analysis_type}"
90
+ sequence_hash = hash_sequence(hash_input)
91
+ cached = results_collection.find_one({"_id": sequence_hash})
92
+ if cached:
93
+ return cached["repeats"]
94
+
95
+ fragments = fragment_protein_sequence(sequence)
96
+ final_repeats = defaultdict(int)
97
+
98
+ if analysis_type == "Hetero":
99
+ for fragment in fragments:
100
+ fragment_repeats = find_hetero_amino_acid_repeats(fragment)
101
+ for k, v in fragment_repeats.items():
102
+ final_repeats[k] += v
103
+ final_repeats = check_boundary_repeats(fragments, final_repeats, overlap)
104
+ new_repeats = find_new_boundary_repeats(fragments, final_repeats, overlap)
105
+ for k, v in new_repeats.items():
106
+ final_repeats[k] += v
107
+ final_repeats = {k: v for k, v in final_repeats.items() if not is_homo_repeat(k)}
108
+
109
+ elif analysis_type == "Homo":
110
+ final_repeats = find_homorepeats(sequence)
111
+
112
+ elif analysis_type == "Both":
113
+ hetero_repeats = defaultdict(int)
114
+ for fragment in fragments:
115
+ fragment_repeats = find_hetero_amino_acid_repeats(fragment)
116
+ for k, v in fragment_repeats.items():
117
+ hetero_repeats[k] += v
118
+ hetero_repeats = check_boundary_repeats(fragments, hetero_repeats, overlap)
119
+ new_repeats = find_new_boundary_repeats(fragments, hetero_repeats, overlap)
120
+ for k, v in new_repeats.items():
121
+ hetero_repeats[k] += v
122
+ hetero_repeats = {k: v for k, v in hetero_repeats.items() if not is_homo_repeat(k)}
123
+ homo_repeats = find_homorepeats(sequence)
124
+ final_repeats = homo_repeats.copy()
125
+ for k, v in hetero_repeats.items():
126
+ final_repeats[k] += v
127
+
128
+ results_collection.insert_one({
129
+ "_id": sequence_hash,
130
+ "sequence": sequence,
131
+ "analysis_type": analysis_type,
132
+ "repeats": dict(final_repeats)
133
+ })
134
+ return final_repeats
135
+
136
+ def process_excel(excel_data, analysis_type):
137
+ repeats = set()
138
+ sequence_data = []
139
+ count = 0
140
+ for sheet_name in excel_data.sheet_names:
141
+ df = excel_data.parse(sheet_name)
142
+ if len(df.columns) < 3:
143
+ st.error(f"Error: The sheet '{sheet_name}' must have at least three columns: ID, Protein Name, Sequence")
144
+ return None, None
145
+ for _, row in df.iterrows():
146
+ entry_id = str(row[0])
147
+ protein_name = str(row[1])
148
+ sequence = str(row[2]).replace('"', '').replace(' ', '').strip()
149
+ if not sequence:
150
+ continue
151
+ count += 1
152
+ freq = get_or_process_sequence(sequence, analysis_type)
153
+ sequence_data.append((entry_id, protein_name, freq))
154
+ repeats.update(freq.keys())
155
+ st.toast(f"{count} sequences processed.")
156
+ return repeats, sequence_data
157
+
158
+ def create_excel(sequences_data, repeats, filenames):
159
+ output = BytesIO()
160
+ workbook = xlsxwriter.Workbook(output, {'in_memory': True})
161
+ for file_index, file_data in enumerate(sequences_data):
162
+ filename = filenames[file_index]
163
+ worksheet = workbook.add_worksheet(filename[:31])
164
+ worksheet.write(0, 0, "Entry")
165
+ worksheet.write(0, 1, "Protein Name")
166
+ col = 2
167
+ for repeat in sorted(repeats):
168
+ worksheet.write(0, col, repeat)
169
+ col += 1
170
+ row = 1
171
+ for entry_id, protein_name, freq in file_data:
172
+ worksheet.write(row, 0, entry_id)
173
+ worksheet.write(row, 1, protein_name)
174
+ col = 2
175
+ for repeat in sorted(repeats):
176
+ worksheet.write(row, col, freq.get(repeat, 0))
177
+ col += 1
178
+ row += 1
179
+ workbook.close()
180
+ output.seek(0)
181
+ return output
182
+
183
+ # Streamlit UI
184
+ st.set_page_config(page_title="Protein Tool", layout="wide")
185
+ st.title("🧬 Protein Analysis Toolkit by SCBL, IITG")
186
+
187
+ app_choice = st.radio("Choose an option", ["πŸ” Protein Repeat Finder", "πŸ“Š Protein Comparator", "πŸ§ͺ Amino Acid Percentage Analyzer"])
188
+
189
+ if app_choice == "πŸ” Protein Repeat Finder":
190
+ analysis_type = st.radio("Select analysis type:", ["Homo", "Hetero", "Both"], index=2)
191
+ uploaded_files = st.file_uploader("Upload Excel files", accept_multiple_files=True, type=["xlsx"])
192
+
193
+ if 'all_sequences_data' not in st.session_state:
194
+ st.session_state.all_sequences_data = []
195
+ st.session_state.all_repeats = set()
196
+ st.session_state.filenames = []
197
+ st.session_state.excel_file = None
198
+
199
+ if uploaded_files and st.button("Process Files"):
200
+ st.session_state.all_repeats = set()
201
+ st.session_state.all_sequences_data = []
202
+ st.session_state.filenames = []
203
+ for file in uploaded_files:
204
+ excel_data = pd.ExcelFile(file)
205
+ repeats, sequence_data = process_excel(excel_data, analysis_type)
206
+ if repeats is not None:
207
+ st.session_state.all_repeats.update(repeats)
208
+ st.session_state.all_sequences_data.append(sequence_data)
209
+ st.session_state.filenames.append(file.name)
210
+ if st.session_state.all_sequences_data:
211
+ st.toast(f"Processed {len(uploaded_files)} file(s) successfully.")
212
+ st.session_state.excel_file = create_excel(
213
+ st.session_state.all_sequences_data,
214
+ st.session_state.all_repeats,
215
+ st.session_state.filenames
216
+ )
217
+
218
+ if st.session_state.excel_file:
219
+ st.download_button(
220
+ label="Download Excel file",
221
+ data=st.session_state.excel_file,
222
+ file_name="Protein_Repeats_Analysis.xlsx",
223
+ mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
224
+ )
225
+
226
+ # Display results table and repeat cluster visualization
227
+ if st.checkbox("Show Results Table"):
228
+ rows = []
229
+ for file_index, file_data in enumerate(st.session_state.all_sequences_data):
230
+ filename = st.session_state.filenames[file_index]
231
+ for entry_id, protein_name, freq in file_data:
232
+ row = {"Filename": filename, "Entry": entry_id, "Protein Name": protein_name}
233
+ row.update({repeat: freq.get(repeat, 0) for repeat in sorted(st.session_state.all_repeats)})
234
+ rows.append(row)
235
+ result_df = pd.DataFrame(rows)
236
+ st.dataframe(result_df)
237
+
238
+ # Repeat Cluster Visualization
239
+ repeat_counts = defaultdict(int)
240
+ for seq_data in st.session_state.all_sequences_data:
241
+ for _, _, freq_dict in seq_data:
242
+ for repeat, count in freq_dict.items():
243
+ repeat_counts[repeat] += count
244
+
245
+ if repeat_counts:
246
+ sorted_repeats = sorted(repeat_counts.items(), key=lambda x: x[1], reverse=True)
247
+ top_n = st.slider("Select number of top repeats to visualize", min_value=5, max_value=50, value=20)
248
+ top_repeats = sorted_repeats[:top_n]
249
+ repeats, counts = zip(*top_repeats)
250
+
251
+ plt.figure(figsize=(12, 6))
252
+ sns.barplot(x=list(repeats), y=list(counts), palette="viridis")
253
+ plt.xticks(rotation=45, ha='right')
254
+ plt.xlabel("Repeats")
255
+ plt.ylabel("Total Frequency")
256
+ plt.title("Top Repeat Clusters Across All Sequences")
257
+ st.pyplot(plt.gcf())
258
+ else:
259
+ st.warning("No repeat data available to visualize. Please upload files first.")
260
+
261
+
262
+
263
+ elif app_choice == "πŸ“Š Protein Comparator":
264
+ st.write("Upload two Excel files with protein data to compare repeat frequencies.")
265
+
266
+ file1 = st.file_uploader("Upload First Excel File", type=["xlsx"], key="comp1")
267
+ file2 = st.file_uploader("Upload Second Excel File", type=["xlsx"], key="comp2")
268
+
269
+ if file1 and file2:
270
+ df1 = pd.read_excel(file1)
271
+ df2 = pd.read_excel(file2)
272
+
273
+ df1.columns = df1.columns.astype(str)
274
+ df2.columns = df2.columns.astype(str)
275
+
276
+ id_col = df1.columns[0]
277
+ name_col = df1.columns[1]
278
+ repeat_columns = df1.columns[2:]
279
+
280
+ diff_data = []
281
+ for i in range(min(len(df1), len(df2))):
282
+ row1 = df1.iloc[i]
283
+ row2 = df2.iloc[i]
284
+ diff_row = {"Entry": row1[id_col], "Protein Name": row1[name_col]}
285
+ for repeat in repeat_columns:
286
+ val1 = row1.get(repeat, 0)
287
+ val2 = row2.get(repeat, 0)
288
+ change = ((val2 - val1) / val1 * 100) if val1 != 0 else (100 if val2 > 0 else 0)
289
+ diff_row[repeat] = change
290
+ diff_data.append(diff_row)
291
+
292
+ result_df = pd.DataFrame(diff_data)
293
+ percent_cols = result_df.select_dtypes(include='number').columns
294
+ st.dataframe(result_df.style.format({col: "{:.2f}%" for col in percent_cols}))
295
+
296
+ def to_excel_with_colors(df):
297
+ output = BytesIO()
298
+ workbook = xlsxwriter.Workbook(output, {'in_memory': True})
299
+ worksheet = workbook.add_worksheet('Comparison')
300
+
301
+ green_format = workbook.add_format({'font_color': 'green'})
302
+ red_format = workbook.add_format({'font_color': 'red'})
303
+ header_format = workbook.add_format({'bold': True, 'bg_color': '#D7E4BC'})
304
+
305
+ for col_num, col_name in enumerate(df.columns):
306
+ worksheet.write(0, col_num, col_name, header_format)
307
+
308
+ for row_num, row in enumerate(df.itertuples(index=False), start=1):
309
+ for col_num, value in enumerate(row):
310
+ if col_num < 2:
311
+ worksheet.write(row_num, col_num, value)
312
+ else:
313
+ fmt = green_format if value > 0 else red_format if value < 0 else None
314
+ worksheet.write(row_num, col_num, f"{value:.2f}%", fmt)
315
+
316
+ workbook.close()
317
+ output.seek(0)
318
+ return output
319
+
320
+ excel_file = to_excel_with_colors(result_df)
321
+
322
+ st.download_button(
323
+ label="Download Colored Comparison Excel",
324
+ data=excel_file,
325
+ file_name="comparison_result_colored.xlsx",
326
+ mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
327
+ )
328
+
329
+ elif app_choice == "πŸ§ͺ Amino Acid Percentage Analyzer":
330
+ import matplotlib.pyplot as plt # Needed for pie chart
331
+
332
+ AMINO_ACIDS = set("ACDEFGHIKLMNPQRSTVWY")
333
+
334
+ uploaded_file = st.file_uploader("Upload Excel file (with Entry, Protein Name, Sequence)", type=["xlsx"])
335
+
336
+ if uploaded_file and st.button("Analyze File"):
337
+ df = pd.read_excel(uploaded_file)
338
+
339
+ if len(df.columns) < 3:
340
+ st.error("The file must have at least three columns: Entry, Protein Name, Sequence")
341
+ else:
342
+ entry_col = df.columns[0]
343
+ name_col = df.columns[1]
344
+ seq_col = df.columns[2]
345
+
346
+ from collections import Counter
347
+ all_counts = Counter()
348
+ all_length = 0
349
+ result_rows = []
350
+
351
+ for _, row in df.iterrows():
352
+ entry = str(row[entry_col])
353
+ name = str(row[name_col])
354
+ sequence = str(row[seq_col]).replace(" ", "").replace("\"", "").strip().upper()
355
+ sequence = ''.join(filter(lambda c: c in AMINO_ACIDS, sequence))
356
+ length = len(sequence)
357
+
358
+ if length == 0:
359
+ continue
360
+
361
+ count = Counter(sequence)
362
+ all_counts.update(count)
363
+ all_length += length
364
+ percentage = {aa: round(count[aa] / length * 100, 2) for aa in AMINO_ACIDS}
365
+ result_rows.append({"Entry": entry, "Protein Name": name, **percentage})
366
+
367
+ overall_percentage = {aa: round(all_counts[aa] / all_length * 100, 2) for aa in AMINO_ACIDS}
368
+ overall_row = {"Entry": "OVERALL", "Protein Name": "ALL SEQUENCES", **overall_percentage}
369
+ df_result = pd.concat([pd.DataFrame([overall_row]), pd.DataFrame(result_rows)], ignore_index=True)
370
+
371
+ st.dataframe(df_result)
372
+
373
+ # πŸ”΅ Pie Chart
374
+ st.subheader("🧁 Overall Amino Acid Composition (Pie Chart)")
375
+ fig, ax = plt.subplots(figsize=(9, 9))
376
+ labels = list(overall_percentage.keys())
377
+ sizes = list(overall_percentage.values())
378
+ filtered = [(label, size) for label, size in zip(labels, sizes) if size > 0]
379
+
380
+ if filtered:
381
+ labels, sizes = zip(*filtered)
382
+ ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90, counterclock=False)
383
+ ax.axis('equal')
384
+ st.pyplot(fig)
385
+ else:
386
+ st.info("No valid amino acids found to display in pie chart.")
387
+
388
+ # Excel Export
389
+ def to_excel(df):
390
+ output = BytesIO()
391
+ workbook = xlsxwriter.Workbook(output, {'in_memory': True})
392
+ worksheet = workbook.add_worksheet("Amino Acid %")
393
+ header_format = workbook.add_format({'bold': True, 'bg_color': '#CDEDF6'})
394
+ for col_num, col_name in enumerate(df.columns):
395
+ worksheet.write(0, col_num, col_name, header_format)
396
+ for row_num, row in enumerate(df.itertuples(index=False), start=1):
397
+ for col_num, value in enumerate(row):
398
+ worksheet.write(row_num, col_num, value)
399
+ workbook.close()
400
+ output.seek(0)
401
+ return output
402
+
403
+ excel_file = to_excel(df_result)
404
+
405
+ st.download_button(
406
+ label="Download Excel Report",
407
+ data=excel_file,
408
+ file_name="amino_acid_percentage.xlsx",
409
+ mime="application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
410
+ )
411
+
requirements.txt ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ pandas
3
+ xlsxwriter
4
+ openpyxl
5
+ pymongo
6
+ matplotlib
7
+ seaborn
8
+ python-dotenv