Spaces:
Sleeping
Sleeping
| import cv2 | |
| from PIL import Image | |
| import os | |
| os.environ["SM_FRAMEWORK"] = "tf.keras" | |
| import segmentation_models as sm | |
| import numpy as np | |
| from matplotlib import pyplot as plt | |
| import random | |
| from keras.models import load_model | |
| from keras import backend as K | |
| import gradio as gr | |
| def jaccard_coef(y_true, y_pred): | |
| y_true_flatten = K.flatten(y_true) | |
| y_pred_flatten = K.flatten(y_pred) | |
| intersection = K.sum(y_true_flatten*y_pred_flatten) + 1.0 | |
| union = K.sum(y_true_flatten) + K.sum(y_pred_flatten) - intersection + 1.0 | |
| iou = intersection / union | |
| return iou | |
| weights = [0.166,0.166,0.166,0.166,0.166,0.166] | |
| dice_loss = sm.losses.DiceLoss(class_weights = weights) | |
| focal_loss = sm.losses.CategoricalFocalLoss() | |
| total_loss = dice_loss + (1 * focal_loss) | |
| saved_model = load_model('model/satellite_segmentation_full.h5', | |
| custom_objects=({'dice_loss_plus_1focal_loss': total_loss, | |
| 'jaccard_coef': jaccard_coef})) | |
| def process_input_image(image_source): | |
| image = np.expand_dims(image_source, 0) | |
| prediction = saved_model.predict(image) | |
| predicted_image = np.argmax(prediction, axis=3) | |
| predicted_image = predicted_image[0,:,:] | |
| predicted_image = predicted_image * 50 | |
| return 'Predicted Masked Image', predicted_image | |
| my_app = gr.Blocks() | |
| with my_app: | |
| gr.Markdown("Statellite Image Segmentation Application UI with Gradio") | |
| with gr.Tabs(): | |
| with gr.TabItem("Select your image"): | |
| with gr.Row(): | |
| with gr.Column(): | |
| img_source = gr.Image(label="Please select source Image", shape=(256, 256)) | |
| source_image_loader = gr.Button("Load above Image") | |
| with gr.Column(): | |
| output_label = gr.Label(label="Image Info") | |
| img_output = gr.Image(label="Image Output") | |
| source_image_loader.click( | |
| process_input_image, | |
| [ | |
| img_source | |
| ], | |
| [ | |
| output_label, | |
| img_output | |
| ] | |
| ) | |
| my_app.launch(debug=True) | |