Upload 4 files
Browse files- Dockerfile +20 -0
- main.py +57 -0
- malaria.h5 +3 -0
- requirements.txt +7 -0
Dockerfile
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# you will also find guides on how best to write your Dockerfile
|
2 |
+
|
3 |
+
FROM python:3.9
|
4 |
+
|
5 |
+
WORKDIR /code
|
6 |
+
|
7 |
+
COPY ./requirements.txt /code/requirements.txt
|
8 |
+
|
9 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
10 |
+
|
11 |
+
RUN useradd -m -u 1000 user
|
12 |
+
USER user
|
13 |
+
ENV HOME=/home/user \
|
14 |
+
PATH=/home/user/.local/bin:$PATH
|
15 |
+
|
16 |
+
WORKDIR $HOME/app
|
17 |
+
|
18 |
+
COPY --chown=user . $HOME/app
|
19 |
+
|
20 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
main.py
ADDED
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import uvicorn
|
2 |
+
import numpy as np
|
3 |
+
from io import BytesIO
|
4 |
+
from fastapi import FastAPI, File, UploadFile
|
5 |
+
from PIL import Image
|
6 |
+
import tensorflow as tf
|
7 |
+
from fastapi.middleware.cors import CORSMiddleware
|
8 |
+
|
9 |
+
app = FastAPI()
|
10 |
+
|
11 |
+
CHANNELS = 3
|
12 |
+
IMAGE_SIZE = 256
|
13 |
+
|
14 |
+
origins = [
|
15 |
+
"http://localhost",
|
16 |
+
"http://localhost:3000",
|
17 |
+
]
|
18 |
+
app.add_middleware(
|
19 |
+
CORSMiddleware,
|
20 |
+
allow_origins=origins,
|
21 |
+
allow_credentials=True,
|
22 |
+
allow_methods=["*"],
|
23 |
+
allow_headers=["*"],
|
24 |
+
)
|
25 |
+
|
26 |
+
MODEL = tf.keras.models.load_model("malaria.h5")
|
27 |
+
|
28 |
+
CLASS_NAMES = ['uninfected', 'parasitized']
|
29 |
+
|
30 |
+
@app.get("/ping")
|
31 |
+
async def ping():
|
32 |
+
return "Hello, I am alive"
|
33 |
+
|
34 |
+
if __name__ == "__main__":
|
35 |
+
uvicorn.run(app, host='localhost', port=8000)
|
36 |
+
|
37 |
+
def read_file_as_image(data) -> np.ndarray:
|
38 |
+
image = np.array(Image.open(BytesIO(data)))
|
39 |
+
image = tf.image.resize_with_crop_or_pad(image,IMAGE_SIZE,IMAGE_SIZE)
|
40 |
+
image = tf.reshape(image, (-1,IMAGE_SIZE, IMAGE_SIZE, CHANNELS))
|
41 |
+
|
42 |
+
return image
|
43 |
+
|
44 |
+
@app.post("/predict")
|
45 |
+
async def predict(file: UploadFile):
|
46 |
+
image = read_file_as_image(await file.read())
|
47 |
+
|
48 |
+
# image_batch = np.expand_dims(image, 0)
|
49 |
+
predictions = MODEL.predict(image)
|
50 |
+
|
51 |
+
predicted_class = CLASS_NAMES[predictions]
|
52 |
+
confidence = predictions
|
53 |
+
|
54 |
+
return {
|
55 |
+
'class': predicted_class,
|
56 |
+
"confidence": float(confidence)
|
57 |
+
}
|
malaria.h5
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:03ce668a3563af463870e42b280d9a3ba6b669ca376afd99aea9ec2a27dbca96
|
3 |
+
size 1885128
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
tensorflow
|
2 |
+
fastapi
|
3 |
+
uvicorn
|
4 |
+
python-multipart
|
5 |
+
pillow
|
6 |
+
matplotlib
|
7 |
+
numpy
|