Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from diffusers import StableDiffusionXLPipeline, EulerDiscreteScheduler | |
from huggingface_hub import hf_hub_download | |
from safetensors.torch import load_file | |
import spaces | |
import os | |
from PIL import Image | |
SAFETY_CHECKER = os.environ.get("SAFETY_CHECKER", "0") == "1" | |
# Constants | |
base = "stabilityai/stable-diffusion-xl-base-1.0" | |
repo = "ByteDance/SDXL-Lightning" | |
checkpoints = { | |
"1-Step" : ["sdxl_lightning_1step_unet_x0.safetensors", 1], | |
"2-Step" : ["sdxl_lightning_2step_unet.safetensors", 2], | |
"4-Step" : ["sdxl_lightning_4step_unet.safetensors", 4], | |
"8-Step" : ["sdxl_lightning_8step_unet.safetensors", 8], | |
} | |
# Ensure model and scheduler are initialized in GPU-enabled function | |
if torch.cuda.is_available(): | |
pipe = StableDiffusionXLPipeline.from_pretrained(base, torch_dtype=torch.float16, variant="fp16").to("cuda") | |
if SAFETY_CHECKER: | |
from safety_checker import StableDiffusionSafetyChecker | |
from transformers import CLIPFeatureExtractor | |
safety_checker = StableDiffusionSafetyChecker.from_pretrained( | |
"CompVis/stable-diffusion-safety-checker" | |
).to("cuda") | |
feature_extractor = CLIPFeatureExtractor.from_pretrained( | |
"openai/clip-vit-base-patch32" | |
) | |
def check_nsfw_images( | |
images: list[Image.Image], | |
) -> tuple[list[Image.Image], list[bool]]: | |
safety_checker_input = feature_extractor(images, return_tensors="pt").to("cuda") | |
has_nsfw_concepts = safety_checker( | |
images=[images], | |
clip_input=safety_checker_input.pixel_values.to("cuda") | |
) | |
return images, has_nsfw_concepts | |
# Function | |
def generate_image(prompt, ckpt): | |
checkpoint = checkpoints[ckpt][0] | |
num_inference_steps = checkpoints[ckpt][1] | |
if num_inference_steps==1: | |
# Ensure sampler uses "trailing" timesteps and "sample" prediction type for 1-step inference. | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing", prediction_type="sample") | |
else: | |
# Ensure sampler uses "trailing" timesteps. | |
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | |
pipe.unet.load_state_dict(load_file(hf_hub_download(repo, checkpoint), device="cuda")) | |
results = pipe(prompt, num_inference_steps=num_inference_steps, guidance_scale=0) | |
if SAFETY_CHECKER: | |
images, has_nsfw_concepts = check_nsfw_images(results.images) | |
if any(has_nsfw_concepts): | |
gr.Warning("NSFW content detected.") | |
return Image.new("RGB", (512, 512)) | |
return images[0] | |
return results.images[0] | |
# Gradio Interface | |
description = """ | |
This demo utilizes the SDXL-Lightning model by ByteDance, which is a fast text-to-image generative model capable of producing high-quality images in 4 steps. | |
As a community effort, this demo was put together by AngryPenguin. Link to model: https://huggingface.co/ByteDance/SDXL-Lightning | |
""" | |
with gr.Blocks(css="style.css") as demo: | |
gr.HTML("<h1><center>Text-to-Image with SDXL Lightning ⚡</center></h1>") | |
gr.Markdown(description) | |
with gr.Group(): | |
with gr.Row(): | |
prompt = gr.Textbox(label='Enter you image prompt:', scale=8) | |
ckpt = gr.Dropdown(label='Select Inference Steps',choices=['1-Step', '2-Step', '4-Step', '8-Step'], value='4-Step', interactive=True) | |
submit = gr.Button(scale=1, variant='primary') | |
img = gr.Image(label='SDXL-Lightening Generate Image') | |
prompt.submit(fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=img, | |
) | |
submit.click(fn=generate_image, | |
inputs=[prompt, ckpt], | |
outputs=img, | |
) | |
demo.queue().launch() |