DIS_IPL1 / get_win_accuracy.py
jarajpu
Adding leaderboard enhancement
acb0ebd
import json
from collections import defaultdict
from datasets import load_dataset
def load_hf_dataset(dataset_name, split='train'):
dataset = load_dataset(dataset_name)
return dataset[split]
def calculate_win_accuracy(predictions, outcomes):
# Initialize dictionary to store winning accuracy for each user
win_accuracy = defaultdict(float)
for user, user_predictions in predictions.items():
correct_predictions = 0
total_predictions = 0
# Iterate through each match prediction of the user
for match_id, predicted_winner in user_predictions.items():
# Filter outcomes dataset to find match_id
filtered_outcomes = outcomes.filter(lambda x: x['match_id'] == match_id)
# Check if any outcome matches the match_id
if len(filtered_outcomes) > 0:
total_predictions += 1
# Compare the predicted winner with the actual winning team
if predicted_winner == filtered_outcomes[0]['winning_team']:
correct_predictions += 1
# Calculate the winning accuracy for the user
if total_predictions > 0:
win_accuracy[user] = round(correct_predictions / total_predictions, 2)
else:
win_accuracy[user] = 0.0
return win_accuracy
def get_last_5_predictions(predictions, outcomes, users):
# Initialize last_5_predictions with user names from outcomes dataset
last_5_predictions = {user: [None] * 5 for user in users}
for user, user_predictions in predictions.items():
# Get the last five matches for the user
last_5_matches = list(user_predictions.keys())[-5:]
# Iterate through the last five matches
for i, match_id in enumerate(last_5_matches):
predicted_winner = user_predictions.get(match_id)
# Check if predicted_winner is None
if predicted_winner is None:
last_5_predictions[user][i] = None
continue
# Filter outcomes dataset to find match_id
filtered_outcomes = outcomes.filter(lambda x: x['match_id'] == match_id)
# Check if any outcome matches the match_id
if len(filtered_outcomes) > 0:
# Compare the predicted winner with the actual winning team
outcome = filtered_outcomes[0]['winning_team']
is_correct_prediction = predicted_winner == outcome
last_5_predictions[user][i] = is_correct_prediction
else:
# No outcome found for the match
last_5_predictions[user][i] = None
return last_5_predictions
def main():
# Load predictions dataset from Hugging Face Dataset repo
predictions = load_hf_dataset("Jay-Rajput/DIS_IPL_Preds")
# Load outcomes dataset from Hugging Face Dataset repo
outcomes = load_hf_dataset("Jay-Rajput/DIS_IPL_Outcomes")
users_points_dataset = load_hf_dataset("Jay-Rajput/DIS_IPL_Leads")
# Convert dataset to list of dictionaries
users_points = [user for user in users_points_dataset]
# Filter predictions from match number 42 onwards
filtered_predictions = {}
for user_predictions in predictions:
match_id = user_predictions.get("match_id")
predicted_winner = user_predictions.get("predicted_winner")
# Extract match number from the match_id
match_number = int(match_id.split('_')[-1])
# Check if match number is 42 or greater
if match_number >= 50:
# Add user predictions to filtered predictions
user = user_predictions["user_name"]
if user not in filtered_predictions:
filtered_predictions[user] = {}
filtered_predictions[user][match_id] = predicted_winner
# Calculate winning accuracy for each user
win_accuracy = calculate_win_accuracy(filtered_predictions, outcomes)
users = []
for user_data in users_points:
for user, points in user_data.items():
users.append(user)
# Get last 5 predictions for each user
last_5_predictions = get_last_5_predictions(filtered_predictions, outcomes, users)
# Load the existing dictionary of users and points
# users_points = {
# "Arpit": {"0": 45181},
# "Ganesh": {"0": 10251},
# "Haaris": {"0": 13800},
# "Jay": {"0": 23520},
# "Kishore": {"0": 16620},
# "Megha": {"0": 30420},
# "Naveein": {"0": 26100},
# "Neha": {"0": 7500},
# "Praveen": {"0": 28123},
# "Rakesh": {"0": 3416},
# "Sai": {"0": 35061},
# "Sahil": {"0": 29705},
# "Sunil": {"0": 15212},
# "Vaibhav": {"0": 11501},
# "Vinay": {"0": 23220}
# }
# Update each user's points with winning accuracy and last 5 predictions
for user_data in users_points:
for user, points in user_data.items():
# Update the points dictionary with winning accuracy
# win_acc = win_accuracy.get(user, 0.0) # Get winning accuracy for the user
# points['win_accuracy'] = round(win_acc * 100, 2) # Convert to percentage and round to 2 decimal places
# Add last 5 predictions
points['last_5'] = last_5_predictions.get(user, [])
# Print the updated dictionary with winning accuracy
print(json.dumps(users_points[0], indent=4))
# Save the updated dictionary to a JSON file
# with open("leaders/users.json", "w") as json_file:
# json.dump(users_points, json_file, indent=4)
if __name__ == "__main__":
main()