Spaces:
Sleeping
Sleeping
| import base64 | |
| import json | |
| import os | |
| import uuid | |
| from datetime import datetime | |
| from pathlib import Path | |
| import math | |
| import pandas as pd | |
| import pytz | |
| import streamlit as st | |
| from datasets import Dataset, load_dataset | |
| from huggingface_hub import CommitScheduler | |
| # File paths as constants | |
| USERS_JSON = 'leaders/users.json' | |
| MATCHES_JSON = 'matches.json' | |
| OUTCOMES_JSON = 'match_outcomes.json' | |
| OUTCOMES = 'outcomes/match_outcomes.json' | |
| BONUS_JSON = 'bonus/redistributed_matches.json' | |
| PLAYERS_JSON = 'players.json' | |
| image_path = 'ipl_image.png' | |
| PREDICTIONS_FOLDER = Path("predictions") | |
| PREDICTIONS_FOLDER.mkdir(parents=True, exist_ok=True) | |
| users_file = Path("leaders") / f"users.json" | |
| USERS_FOLDER = users_file.parent | |
| USERS_FOLDER.mkdir(parents=True, exist_ok=True) | |
| outcomes_file = Path("outcomes") / f"match_outcomes.json" | |
| OUTCOMES_FOLDER = outcomes_file.parent | |
| OUTCOMES_FOLDER.mkdir(parents=True, exist_ok=True) | |
| redistribution_file = Path("bonus") / f"redistributed_matches.json" | |
| REDISTRIBUTED_FOLDER = redistribution_file.parent | |
| REDISTRIBUTED_FOLDER.mkdir(parents=True, exist_ok=True) | |
| # Initialize CommitScheduler | |
| scheduler = CommitScheduler( | |
| repo_id="DIS_IPL_Preds", | |
| repo_type="dataset", | |
| folder_path=PREDICTIONS_FOLDER, # Local folder where predictions are saved temporarily | |
| path_in_repo="predictions", # Path in dataset repo where predictions will be saved | |
| every=720, # Push every 240 minutes (4 hours) | |
| ) | |
| # Initialize CommitScheduler | |
| scheduler = CommitScheduler( | |
| repo_id="DIS_IPL_Leads", | |
| repo_type="dataset", | |
| folder_path=USERS_FOLDER, # Local folder where users are saved temporarily | |
| path_in_repo="leaders", # Path in dataset repo where predictions will be saved | |
| every=720, # Push every 240 minutes (4 hours) | |
| ) | |
| # Initialize CommitScheduler | |
| scheduler = CommitScheduler( | |
| repo_id="DIS_IPL_Outcomes", | |
| repo_type="dataset", | |
| folder_path=OUTCOMES_FOLDER, # Local folder where users are saved temporarily | |
| path_in_repo="outcomes", # Path in dataset repo where predictions will be saved | |
| every=720, # Push every 240 minutes (4 hours) | |
| ) | |
| def load_data(file_path): | |
| """ | |
| Load data from a JSON or CSV file. | |
| Args: | |
| file_path (str): The path to the file to load. | |
| Returns: | |
| pd.DataFrame or dict: The loaded data. | |
| """ | |
| try: | |
| if file_path.endswith('.json'): | |
| with open(file_path, 'r') as file: | |
| return json.load(file) | |
| elif file_path.endswith('.csv'): | |
| return pd.read_csv(file_path) | |
| except FileNotFoundError: | |
| if file_path.endswith('.json'): | |
| return {} | |
| elif file_path.endswith('.csv'): | |
| return pd.DataFrame() | |
| def get_base64_of_image(path): | |
| with open(path, "rb") as image_file: | |
| return base64.b64encode(image_file.read()).decode() | |
| # Get today's date in IST to load today's match | |
| def get_current_date_ist(): | |
| tz_IST = pytz.timezone('Asia/Kolkata') | |
| datetime_ist = datetime.now(tz_IST) | |
| return datetime_ist.strftime('%Y-%m-%d') | |
| # Function to get matches for today | |
| def get_today_matches(): | |
| today = get_current_date_ist() | |
| matches = load_data(MATCHES_JSON) | |
| today_matches = [match for match in matches if match['date'] == today] | |
| return today_matches | |
| # Function to check if prediction submission is allowed | |
| def is_submission_allowed(match_id): | |
| matches = load_data(MATCHES_JSON) # This loads matches correctly with IST times | |
| for match in matches: | |
| if match["match_id"] == match_id: | |
| # Parse the match start time in IST | |
| tz_IST = pytz.timezone('Asia/Kolkata') | |
| match_datetime_str = f'{match["date"]} {match["time"]}' | |
| # The match time string is like "2024-03-21 7:30 PM" | |
| match_datetime = datetime.strptime(match_datetime_str, "%Y-%m-%d %I:%M %p") | |
| match_datetime = tz_IST.localize(match_datetime) # Set the timezone to IST | |
| # Get the current time in IST | |
| current_datetime = datetime.now(tz_IST) | |
| if current_datetime > match_datetime: | |
| return False | |
| else: | |
| return True | |
| return False # If match_id not found, default to False | |
| # Submit prediction function | |
| def submit_prediction( | |
| user_name, | |
| match_id, | |
| predicted_winner, | |
| predicted_motm, | |
| bid_points, | |
| min_bid_points, | |
| max_bid_points, | |
| wildcard_used | |
| ): | |
| # Validation for user selection | |
| if user_name == "Select a user...": | |
| st.warning("Please select a valid user.") | |
| return | |
| # Check if prediction submission is allowed for the match | |
| if not is_submission_allowed(match_id): | |
| st.error("Prediction submission time has passed. Predictions can't be submitted after match start.") | |
| return | |
| if bid_points < min_bid_points: | |
| st.error( | |
| f"Oops, your bid is too low! 🚫 Minimum allowed bid is {min_bid_points} (10% of your points)." | |
| ) | |
| return | |
| if bid_points > max_bid_points: | |
| st.error( | |
| f"Oops, your bid is too high! 🚫 Maximum allowed bid is {max_bid_points}." | |
| ) | |
| return | |
| prediction_id = uuid.uuid4().hex | |
| prediction_time = datetime.now().strftime('%Y-%m-%d') | |
| prediction_data = { | |
| 'prediction_id': prediction_id, | |
| 'user_name': user_name, | |
| 'match_id': match_id, | |
| 'predicted_winner': predicted_winner, | |
| 'predicted_motm': predicted_motm, | |
| 'bid_points': bid_points, | |
| 'wildcard_used': wildcard_used if wildcard_used != "None" else None, | |
| 'prediction_date': prediction_time # Include the prediction time | |
| } | |
| # Construct the filename to include match_id for easier retrieval | |
| prediction_file_name = f"prediction_{match_id}_{user_name}.json" | |
| prediction_file = PREDICTIONS_FOLDER / prediction_file_name | |
| # Load existing predictions for the user and match, if any | |
| existing_predictions = [] | |
| if prediction_file.exists(): | |
| with prediction_file.open("r") as file: | |
| for line in file: | |
| existing_predictions.append(json.loads(line.strip())) | |
| # Update existing prediction if it exists for the same user and match | |
| prediction_updated = False | |
| for existing_prediction in existing_predictions: | |
| if existing_prediction['user_name'] == user_name and existing_prediction['match_id'] == match_id: | |
| existing_prediction.update(prediction_data) | |
| prediction_updated = True | |
| break | |
| # Save the updated predictions back to the file | |
| with scheduler.lock: | |
| if not prediction_updated: | |
| # Append the new prediction if it doesn't already exist | |
| with prediction_file.open("a") as file: | |
| file.write(json.dumps(prediction_data)) | |
| file.write("\n") | |
| else: | |
| with prediction_file.open("w") as file: | |
| for prediction in existing_predictions: | |
| file.write(json.dumps(prediction)) | |
| file.write("\n") | |
| st.success("Prediction submitted successfully!") | |
| def get_user_total_points(user_name): | |
| # users_dataset = load_dataset("Jay-Rajput/DIS_IPL_Leads", split="train") | |
| # users = users_dataset.to_dict() | |
| users = load_users(USERS_JSON) | |
| return users.get(user_name, {}).get('points') | |
| def calculate_min_max_bid_points(user_name): | |
| total_points = get_user_total_points(user_name) | |
| min_bid_points = math.ceil(total_points * 0.10) # round up | |
| max_bid_points = total_points # math.floor(total_points * 0.50) # round down | |
| return int(min_bid_points), int(max_bid_points) | |
| def load_users(USERS_JSON): | |
| try: | |
| with open(USERS_JSON, 'r') as file: | |
| return json.load(file) | |
| except FileNotFoundError: | |
| return {} | |
| def load_bonus(BONUS_JSON): | |
| try: | |
| with open(BONUS_JSON, 'r') as file: | |
| return json.load(file) | |
| except FileNotFoundError: | |
| return [] | |
| def user_selection_and_prediction(): | |
| users_data = load_users(USERS_JSON) | |
| users = list(users_data) | |
| user_name = st.selectbox("Select User", ["Select a user..."] + users) | |
| min_bid_points, max_bid_points = None, None | |
| if user_name != "Select a user...": | |
| min_bid_points, max_bid_points = calculate_min_max_bid_points(user_name) | |
| st.write(f"Bid points range you can submit: {min_bid_points} to {max_bid_points}") | |
| # Load user wildcard status | |
| user_wildcards = users_data.get(user_name, {}).get('wildcard', [0, 0, 0]) | |
| available_wildcards = [] | |
| if user_wildcards[0] == 0: | |
| available_wildcards.append("PowerMoM") | |
| if user_wildcards[1] == 0: | |
| available_wildcards.append("TripleE") | |
| if user_wildcards[2] == 0: | |
| available_wildcards.append("SwitchHit") | |
| available_wildcards = ["None"] + available_wildcards | |
| matches = get_today_matches() | |
| if matches: | |
| match_choice = st.selectbox("Select Today's Match", matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]}") | |
| match_id = match_choice['match_id'] | |
| teams = match_choice['teams'] | |
| predicted_winner = st.selectbox("Predicted Winner", teams) | |
| player_list = load_data(PLAYERS_JSON) | |
| predicted_motm = "" | |
| if predicted_winner in player_list: | |
| players = player_list[predicted_winner] | |
| predicted_motm = st.selectbox("Predicted Man of the Match", players) | |
| bid_points = st.number_input( | |
| "Bid Points", | |
| value=0, | |
| step=1, | |
| format="%d" | |
| ) | |
| wildcard_used = st.selectbox("Select Wildcard (Optional)", available_wildcards) | |
| if st.button("Submit Prediction"): | |
| submit_prediction(user_name, match_id, predicted_winner, predicted_motm, bid_points, min_bid_points, max_bid_points, wildcard_used) | |
| else: | |
| st.write("No matches are scheduled for today.") | |
| def display_predictions(): | |
| if st.button("Show Predictions"): | |
| all_predictions = [] | |
| # Check if the directory exists | |
| if not os.path.exists(PREDICTIONS_FOLDER): | |
| st.write("No predictions directory found.") | |
| return | |
| # List all JSON files in the directory | |
| for filename in os.listdir(PREDICTIONS_FOLDER): | |
| if filename.endswith('.json'): | |
| file_path = os.path.join(PREDICTIONS_FOLDER, filename) | |
| # Read each JSON file and append its contents to the list | |
| with open(file_path, 'r') as file: | |
| prediction = json.load(file) | |
| all_predictions.append(prediction) | |
| # Convert the list of dictionaries to a DataFrame | |
| predictions_df = pd.DataFrame(all_predictions) | |
| if not predictions_df.empty: | |
| predictions_df['prediction_date'] = predictions_df.apply(lambda x: datetime.strptime(x['prediction_date'], '%Y-%m-%d'), axis=1) | |
| # Filter for today's predictions | |
| today_str = datetime.now().strftime('%Y-%m-%d') | |
| todays_predictions = predictions_df[predictions_df['prediction_date'] == today_str] | |
| # Remove the 'prediction_id' column if it exists | |
| if 'prediction_id' in todays_predictions.columns: | |
| todays_predictions = todays_predictions.drop(columns=['prediction_id', 'prediction_date']) | |
| st.dataframe(todays_predictions, hide_index=True) | |
| else: | |
| st.write("No predictions for today's matches yet.") | |
| def display_leaderboard(): | |
| if st.button("Show Leaderboard"): | |
| try: | |
| # Load the 'leaders' configuration | |
| dataset = load_dataset("Jay-Rajput/DIS_IPL_Leads", split='train') | |
| users_data = [] | |
| if dataset: | |
| for user, points_dict in dataset[0].items(): | |
| points = points_dict.get("points", 0) | |
| last_5_results = " ".join(points_dict.get("last_5_results", ["⚪"] * 5)) # Default: 5 white circles | |
| bonus = points_dict.get("redistributed_bonus", 0) | |
| bonus_display = f"+{bonus}" if bonus > 0 else "" | |
| wildcard_flags = points_dict.get("wildcard", [0, 0, 0]) | |
| wildcard_display = [] | |
| if wildcard_flags[0] == 1: | |
| wildcard_display.append("🟡PM") # PowerMoM | |
| if wildcard_flags[1] == 1: | |
| wildcard_display.append("🔺3E") # TripleE | |
| if wildcard_flags[2] == 1: | |
| wildcard_display.append("🔁SH") # SwitchHit | |
| users_data.append({ | |
| 'User': user, | |
| 'Points': points, | |
| 'TOLBOG Wallet': bonus_display, | |
| 'Wildcards Used': ", ".join(wildcard_display), | |
| 'Last 5 Bids': last_5_results | |
| }) | |
| else: | |
| st.warning("No leaderboard data found.") | |
| leaderboard = pd.DataFrame(users_data) | |
| # Sort DataFrame by points in descending order | |
| leaderboard = leaderboard.sort_values(by='Points', ascending=False) | |
| # Add a 'Rank' column starting from 1 | |
| leaderboard['Rank'] = range(1, len(leaderboard) + 1) | |
| # Select and order the columns for display | |
| leaderboard = leaderboard[['Rank', 'User', 'Points', 'TOLBOG Wallet', 'Wildcards Used', 'Last 5 Bids']] | |
| st.dataframe(leaderboard, hide_index=True) | |
| except Exception as e: | |
| st.write("Failed to load leaderboard data: ", str(e)) | |
| # Streamlit UI | |
| encoded_image = get_base64_of_image(image_path) | |
| custom_css = f""" | |
| <style> | |
| .header {{ | |
| font-size: 50px; | |
| color: #FFD700; /* Gold */ | |
| text-shadow: -1px -1px 0 #000, 1px -1px 0 #000, -1px 1px 0 #000, 1px 1px 0 #000; /* Black text shadow */ | |
| text-align: center; | |
| padding: 10px; | |
| background-image: url('data:image/png;base64,{encoded_image}'); | |
| background-size: cover; | |
| }} | |
| </style> | |
| """ | |
| # Apply custom CSS | |
| st.markdown(custom_css, unsafe_allow_html=True) | |
| # Use the custom class in a div with your title | |
| st.markdown('<div class="header">DIS IPL Match Predictions</div>', unsafe_allow_html=True) | |
| st.write("🏆 Predict, Compete, and Win 🏏 - Where Every Guess Counts! 🏆") | |
| user_guide_content = """ | |
| ### 📘 User Guide | |
| #### Submitting Predictions | |
| - **Match Selection**: Choose the match you want to predict from today's available matches. | |
| - **Team and Player Prediction**: Select the team you predict will win and the "Man of the Match". | |
| - **Bid Points**: Enter the number of points you wish to bid on your prediction. Remember, the maximum you can bid is capped at **20% of your total points**. | |
| #### Scoring System | |
| - **Winning Team Prediction**: | |
| - ✅ **Correct Prediction**: You earn **2000 points** plus your bid amount. | |
| - ❌ **Incorrect Prediction**: You lose **200 points** plus your bid amount. | |
| - **Man of the Match Prediction**: | |
| - ✅ **Correct Prediction**: You earn **an additional 500 points**. | |
| - ❌ **Incorrect Prediction**: No penalty. | |
| - **No Prediction Submitted**: | |
| - ❌ **You lose 10% of your total points** automatically for not submitting a prediction. | |
| #### Bid Point Constraints | |
| - You cannot bid less then 10% and more than 50% of your current total points. | |
| - Bid points will be doubled if your prediction is correct, and deducted if incorrect. | |
| #### Rules for Submission | |
| - **Predictions must be submitted before the match starts**. | |
| - **Only one prediction per match is allowed**. | |
| - **Review your prediction carefully before submission, as it cannot be changed once submitted**. | |
| #### 🔴🟢⚪ Match Performance Tracking | |
| - After each match, your last **5 predictions will be tracked** and displayed on the leaderboard: | |
| - 🟢 **Green** → Correct prediction. | |
| - 🔴 **Red** → Wrong prediction. | |
| - ⚪ **White** → No prediction submitted. | |
| 🚀 **Compete, strategize, and climb the leaderboard!** | |
| """ | |
| # User Guide as an expander | |
| with st.expander("User Guide 📘"): | |
| st.markdown(user_guide_content) | |
| with st.expander("Submit Prediction 📝"): | |
| user_selection_and_prediction() | |
| with st.expander("Predictions 🔍"): | |
| display_predictions() | |
| with st.expander("Leaderboard 🏆"): | |
| display_leaderboard() | |
| ############################# Admin Panel ################################## | |
| ADMIN_PASSPHRASE = "admin123" | |
| def fetch_latest_predictions(match_id): | |
| dataset = load_dataset("Jay-Rajput/DIS_IPL_Preds", split="train") | |
| # Convert the dataset to a pandas DataFrame | |
| df = pd.DataFrame(dataset) | |
| # Ensure the DataFrame is not empty and contains the required columns | |
| if not df.empty and {'user_name', 'match_id'}.issubset(df.columns): | |
| # Filter rows by 'match_id' | |
| filtered_df = df[df['match_id'] == match_id] | |
| # Drop duplicate rows based on 'user_name' | |
| unique_df = filtered_df.drop_duplicates(subset=['user_name']) | |
| return unique_df | |
| else: | |
| return pd.DataFrame() | |
| def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match, outcome_only=False): | |
| outcomes = load_dataset("Jay-Rajput/DIS_IPL_Outcomes", split="train") | |
| outcomes_df = pd.DataFrame(outcomes) | |
| # Update or add match outcome | |
| outcome_exists = False | |
| for idx, outcome in outcomes_df.iterrows(): | |
| if outcome['match_id'] == match_id: | |
| outcomes_df.at[idx, 'winning_team'] = winning_team | |
| outcomes_df.at[idx, 'man_of_the_match'] = man_of_the_match | |
| outcome_exists = True | |
| break | |
| if not outcome_exists: | |
| new_outcome = {"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match} | |
| outcomes_df = pd.concat([outcomes_df, pd.DataFrame([new_outcome])], ignore_index=True) | |
| outcomes = Dataset.from_pandas(outcomes_df) | |
| if not outcome_only: | |
| predictions = fetch_latest_predictions(match_id) | |
| users = load_dataset("Jay-Rajput/DIS_IPL_Leads", split="train") | |
| users_df = pd.DataFrame(users) | |
| submitted_users = set(predictions['user_name']) | |
| # Capture previous leaderboard (top 3 users and their points) | |
| prev_scores = [(user, users_df[user][0]['points']) for user in users_df.columns] | |
| prev_scores.sort(key=lambda x: x[1], reverse=True) | |
| prev_top_3 = prev_scores[:3] | |
| top3_usernames = [user for user, _ in prev_top_3] | |
| lost_points_by_top3 = 0 | |
| user_outcomes = {} | |
| # Step 1: Apply current match outcomes | |
| for user_name in users_df.columns: | |
| user_data = users_df[user_name][0] | |
| user_points = user_data['points'] | |
| user_initial_points = user_points | |
| user_wildcards = user_data.get('wildcard', [0, 0, 0]) | |
| if user_name in submitted_users: | |
| prediction = predictions[predictions['user_name'] == user_name].iloc[0] | |
| predicted_winner = prediction['predicted_winner'] | |
| predicted_motm = prediction['predicted_motm'] | |
| bid_points = prediction['bid_points'] | |
| wildcard_used = prediction.get('wildcard_used') | |
| earned_points = 0 | |
| if predicted_winner == winning_team: | |
| earned_points += 2000 + bid_points | |
| result_indicator = "🟢" | |
| if predicted_motm == man_of_the_match: | |
| earned_points += 500 | |
| if wildcard_used == "PowerMoM": | |
| earned_points += 1000 # MOM bonus tripled (500 -> 1500) | |
| # Extra performance logic placeholder (e.g., 1000 for century etc.) | |
| if wildcard_used == "TripleE": | |
| earned_points *= 3 | |
| else: | |
| earned_points -= 200 + bid_points | |
| result_indicator = "🔴" | |
| if user_name in top3_usernames: | |
| lost_points_by_top3 += (200 + bid_points) | |
| if wildcard_used == "PowerMoM" and predicted_motm != man_of_the_match: | |
| user_wildcards[0] = 1 # Mark PowerMoM used anyway | |
| elif wildcard_used == "TripleE": | |
| user_wildcards[1] = 1 | |
| elif wildcard_used == "SwitchHit": | |
| user_wildcards[2] = 1 | |
| user_points += earned_points | |
| else: | |
| penalty = int(0.10 * user_points) | |
| user_points -= penalty | |
| result_indicator = "⚪" | |
| if user_name in top3_usernames: | |
| lost_points_by_top3 += penalty | |
| user_points = max(user_points, 0) | |
| user_outcomes[user_name] = { | |
| "updated_points": user_points, | |
| "result_indicator": result_indicator, | |
| "initial_points": user_initial_points | |
| } | |
| users_df[user_name][0]['wildcard'] = user_wildcards | |
| # Step 2: Build new leaderboard after applying outcome | |
| new_leaderboard = [(u, d["updated_points"]) for u, d in user_outcomes.items()] | |
| new_leaderboard.sort(key=lambda x: x[1], reverse=True) | |
| third_place_points = new_leaderboard[2][1] if len(new_leaderboard) >= 3 else 0 | |
| # Step 3: Redistribute lost points using difference-from-3rd-place logic (only for users who submitted prediction) | |
| redistribution_pool = lost_points_by_top3 | |
| redistribution_weights = {} | |
| redistribution_total_weight = 0 | |
| for user, data in user_outcomes.items(): | |
| if user not in top3_usernames and user in submitted_users: | |
| diff_from_3rd = max(third_place_points - data['updated_points'], 0) | |
| redistribution_weights[user] = diff_from_3rd | |
| redistribution_total_weight += diff_from_3rd | |
| bonus_distribution = {} | |
| for user, weight in redistribution_weights.items(): | |
| if redistribution_total_weight == 0: | |
| bonus = 0 | |
| else: | |
| bonus = int(redistribution_pool * (weight / redistribution_total_weight)) | |
| bonus_distribution[user] = bonus | |
| # Step 4: Apply bonus and update dataset | |
| for user in users_df.columns: | |
| base_points = user_outcomes[user]["updated_points"] | |
| bonus = bonus_distribution.get(user, 0) | |
| final_points = base_points + bonus | |
| users_df[user][0]['points'] = final_points | |
| users_df[user][0]['redistributed_bonus'] = bonus | |
| # Maintain last 5 results | |
| result = user_outcomes[user]["result_indicator"] | |
| if "last_5_results" not in users_df[user][0]: | |
| users_df[user][0]["last_5_results"] = [] | |
| users_df[user][0]["last_5_results"].insert(0, result) | |
| users_df[user][0]["last_5_results"] = users_df[user][0]["last_5_results"][:5] | |
| # Save updated leaderboard | |
| users.to_json(USERS_JSON) | |
| updated_dataset = Dataset.from_pandas(users_df) | |
| updated_dataset.push_to_hub("Jay-Rajput/DIS_IPL_Leads", split="train") | |
| # Save match outcome | |
| outcomes.to_json(OUTCOMES) | |
| outcomes.push_to_hub("Jay-Rajput/DIS_IPL_Outcomes", split="train") | |
| # def update_leaderboard_and_outcomes(match_id, winning_team, man_of_the_match, outcome_only=False): | |
| # # Load existing match outcomes | |
| # outcomes = load_dataset("Jay-Rajput/DIS_IPL_Outcomes", split="train") | |
| # outcomes_df = pd.DataFrame(outcomes) | |
| # # Directly update or add the match outcome | |
| # outcome_exists = False | |
| # for idx, outcome in outcomes_df.iterrows(): | |
| # if outcome['match_id'] == match_id: | |
| # outcomes_df.at[idx, 'winning_team'] = winning_team | |
| # outcomes_df.at[idx, 'man_of_the_match'] = man_of_the_match | |
| # outcome_exists = True | |
| # break | |
| # if not outcome_exists: | |
| # new_outcome = {"match_id": match_id, "winning_team": winning_team, "man_of_the_match": man_of_the_match} | |
| # outcomes_df = pd.concat([outcomes_df, pd.DataFrame([new_outcome])], ignore_index=True) | |
| # outcomes = Dataset.from_pandas(outcomes_df) | |
| # if not outcome_only: # Update user scores only if outcome_only is False | |
| # # Load predictions only if necessary | |
| # predictions = fetch_latest_predictions(match_id) | |
| # # Load users' data only if necessary | |
| # users = load_dataset("Jay-Rajput/DIS_IPL_Leads", split="train") | |
| # users_df = pd.DataFrame(users) | |
| # # Update user points based on prediction accuracy | |
| # users_with_predictions = set(predictions['user_name']) | |
| # for user_name in users_df.columns: | |
| # user_points = users_df[user_name][0]['points'] | |
| # if user_name in users_with_predictions: | |
| # prediction = predictions[predictions['user_name'] == user_name].iloc[0] | |
| # predicted_winner = prediction['predicted_winner'] | |
| # predicted_motm = prediction['predicted_motm'] | |
| # bid_points = prediction['bid_points'] | |
| # # Update points based on prediction accuracy | |
| # if predicted_winner == winning_team: | |
| # user_points += 2000 + bid_points | |
| # result_indicator = "🟢" # Correct Prediction | |
| # if predicted_motm == man_of_the_match: | |
| # user_points += 500 | |
| # else: | |
| # user_points -= 200 + bid_points | |
| # result_indicator = "🔴" # Wrong Prediction | |
| # else: | |
| # # Deduct 200 points for not submitting a prediction | |
| # user_points -= 200 | |
| # result_indicator = "⚪" # No Prediction | |
| # # Ensure user_points is never negative | |
| # user_points = max(user_points, 0) | |
| # # Update user's points in the DataFrame | |
| # users_df[user_name][0]['points'] = user_points | |
| # users[user_name][0]['points'] = user_points | |
| # # Maintain last 5 prediction results | |
| # if "last_5_results" not in users_df[user_name][0]: | |
| # users_df[user_name][0]["last_5_results"] = [] | |
| # users_df[user_name][0]["last_5_results"].insert(0, result_indicator) # Insert at beginning | |
| # users_df[user_name][0]["last_5_results"] = users_df[user_name][0]["last_5_results"][:5] # Keep only last 5 | |
| # if "last_5_results" not in users[user_name][0]: | |
| # users[user_name][0]["last_5_results"] = [] | |
| # users[user_name][0]["last_5_results"].insert(0, result_indicator) # Insert at beginning | |
| # users[user_name][0]["last_5_results"] = users[user_name][0]["last_5_results"][:5] # Keep only last 5 | |
| # users.to_json(USERS_JSON) | |
| # updated_dataset = Dataset.from_pandas(users_df) | |
| # updated_dataset.push_to_hub("Jay-Rajput/DIS_IPL_Leads", split="train") | |
| # outcomes.to_json(OUTCOMES) | |
| # outcomes.push_to_hub("Jay-Rajput/DIS_IPL_Outcomes", split="train") | |
| # Function to fetch matches for a given date | |
| def fetch_matches_by_date(matches, selected_date): | |
| return [match for match in matches if datetime.strptime(match['date'], '%Y-%m-%d').date() == selected_date] | |
| with st.sidebar: | |
| expander = st.expander("Admin Panel", expanded=False) | |
| admin_pass = expander.text_input("Enter admin passphrase:", type="password", key="admin_pass") | |
| if admin_pass == ADMIN_PASSPHRASE: | |
| expander.success("Authenticated") | |
| all_matches = load_data(MATCHES_JSON) | |
| match_outcomes = load_dataset("Jay-Rajput/DIS_IPL_Outcomes", split="train") | |
| submitted_match_ids = [outcome["match_id"] for outcome in match_outcomes] | |
| # Filter matches to those that do not have outcomes submitted yet | |
| matches_without_outcomes = [match for match in all_matches if match["match_id"] not in submitted_match_ids] | |
| # If matches are available, let the admin select one | |
| if matches_without_outcomes: | |
| # Optional: Allow the admin to filter matches by date | |
| selected_date = expander.date_input("Select Match Date", key="match_date") | |
| if selected_date: | |
| filtered_matches = fetch_matches_by_date(matches_without_outcomes, selected_date) | |
| else: | |
| filtered_matches = matches_without_outcomes | |
| if filtered_matches: | |
| match_selection = expander.selectbox("Select Match", filtered_matches, format_func=lambda match: f"{match['teams'][0]} vs {match['teams'][1]} (Match ID: {match['match_id']})", key="match_selection") | |
| selected_match_id = match_selection['match_id'] | |
| teams = match_selection['teams'] | |
| # Let admin select the winning team | |
| winning_team = expander.selectbox("Winning Team", teams, key="winning_team") | |
| # Fetch and display players for the selected winning team | |
| player_list = load_data(PLAYERS_JSON) | |
| if winning_team in player_list: | |
| players = player_list[winning_team] | |
| man_of_the_match = expander.selectbox("Man of the Match", players, key="man_of_the_match") | |
| else: | |
| players = [] | |
| man_of_the_match = expander.text_input("Man of the Match (Type if not listed)", key="man_of_the_match_fallback") | |
| # Add checkbox for outcome only submission | |
| outcome_only = expander.checkbox("Submit Outcome Only", key="outcome_only_checkbox") | |
| if expander.button("Submit Match Outcome", key="submit_outcome"): | |
| if outcome_only: | |
| # Submit match outcome without updating user scores | |
| update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match, outcome_only=True) | |
| expander.success("Match outcome submitted!") | |
| else: | |
| # Submit match outcome and update user scores | |
| update_leaderboard_and_outcomes(selected_match_id, winning_team, man_of_the_match) | |
| expander.success("Match outcome submitted and leaderboard updated!") | |
| else: | |
| expander.write("No matches available for the selected date.") | |
| else: | |
| expander.write("No matches are available for today.") | |
| else: | |
| if admin_pass: # Show error only if something was typed | |
| expander.error("Not authenticated") | |