Spaces:
Runtime error
Runtime error
JavierGon12
commited on
Commit
·
d8e07ba
1
Parent(s):
86165e8
Insert all files
Browse files- app.py +81 -9
- logo retraced 2.png +0 -0
- pages/Image to text.py +19 -0
- pages/Question Answering.py +85 -0
- pages/Speech Recognition.py +180 -0
- pages/Summarization.py +109 -0
- pages/Text Classification.py +139 -0
- pages/Text Generation.py +25 -0
- pages/Text to Image.py +19 -0
- style.css +54 -0
app.py
CHANGED
@@ -1,17 +1,89 @@
|
|
|
|
|
|
1 |
import streamlit as st
|
2 |
-
from diffusers import DDPMScheduler, UNet2DModel
|
3 |
from PIL import Image
|
4 |
-
import
|
5 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
-
|
8 |
-
from diffusers import StableDiffusionPipeline
|
9 |
|
10 |
-
|
11 |
-
|
12 |
|
13 |
-
prompt = st.text_input('Insert here your prompt')
|
14 |
|
15 |
-
image = pipe(prompt).images[0]
|
16 |
|
17 |
|
|
|
1 |
+
# Install libraries
|
2 |
+
|
3 |
import streamlit as st
|
|
|
4 |
from PIL import Image
|
5 |
+
import streamlit as st
|
6 |
+
from transformers import pipeline
|
7 |
+
import pandas as pd
|
8 |
+
import plotly.express as px
|
9 |
+
import matplotlib.pyplot as plt
|
10 |
+
from pathlib import Path
|
11 |
+
import base64
|
12 |
+
from st_pages import Page, add_page_title, show_pages
|
13 |
+
from streamlit_extras.badges import badge
|
14 |
+
|
15 |
+
|
16 |
+
# Config
|
17 |
+
# Initial page config
|
18 |
+
|
19 |
+
st.set_page_config(
|
20 |
+
page_title='RetrAIced',
|
21 |
+
page_icon=':🧠:',
|
22 |
+
layout="wide",
|
23 |
+
initial_sidebar_state="expanded",
|
24 |
+
)
|
25 |
+
|
26 |
+
def local_css(file_name):
|
27 |
+
with open(file_name) as f:
|
28 |
+
st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)
|
29 |
+
|
30 |
+
local_css("style.css")
|
31 |
+
|
32 |
+
|
33 |
+
def img_to_bytes(img_path):
|
34 |
+
img_bytes = Path(img_path).read_bytes()
|
35 |
+
encoded = base64.b64encode(img_bytes).decode()
|
36 |
+
return encoded
|
37 |
+
|
38 |
+
|
39 |
+
show_pages(
|
40 |
+
[
|
41 |
+
Page("app.py", "Home", "🏠"),
|
42 |
+
Page("pages/Question Answering.py", "Question Answering", ":grey_question:"),
|
43 |
+
Page("pages/Speech Recognition.py", "Speech Recognition", ":speaking_head_in_silhouette:"),
|
44 |
+
Page("pages/Summarization.py", "Summarization",":bookmark_tabs:"),
|
45 |
+
Page("pages/Text to Image.py", "Text to Image",":lower_left_paintbrush:"),
|
46 |
+
Page("pages/Text Classification.py",'Text Classification',":book:"),
|
47 |
+
Page("pages/Image to text.py","Image to Text",":camera:"),
|
48 |
+
Page("pages/Text Generation.py", "Text Generation", ":printer:"),
|
49 |
+
]
|
50 |
+
)
|
51 |
+
|
52 |
+
#Add streamlit logo
|
53 |
+
|
54 |
+
st.image("logo retraced 2.png")
|
55 |
+
st.header("Intro")
|
56 |
+
st.write("##")
|
57 |
+
st.markdown(
|
58 |
+
"""
|
59 |
+
Welcome to **RetrAIced**, a user-friendly app that unifies a diverse array of AI models, offering a seamless platform for exploration and interaction. From natural language processing to image recognition,
|
60 |
+
the app provides a comprehensive experience, showcasing real-time demonstrations of predictive analytics and the fusion of various AI technologies. \n
|
61 |
+
|
62 |
+
Language models (LLMs), especially those from Hugging Face, have transformed natural language understanding and generation, becoming indispensable in today's data-driven world.
|
63 |
+
RetrAIced exemplifies the collaborative potential of AI by breaking down barriers between different models, making their collective power accessible to users of all backgrounds.
|
64 |
+
The app invites developers, data enthusiasts, and the curious to explore and experiment with models for tasks like Question Answering, Speech Recognition, Summarization, Text
|
65 |
+
Classification, and Text Generation. This unified experience paves the way for a connected and intelligent digital world, where projects can become more versatile, efficient, and engaging.\n
|
66 |
+
|
67 |
+
Join the creator on an exciting journey into the world of language models through RetrAIced, unlocking a universe of possibilities and transforming complexities into a unified and intuitive AI experience.
|
68 |
+
|
69 |
+
"""
|
70 |
+
, unsafe_allow_html=True)
|
71 |
+
|
72 |
+
|
73 |
+
st.write("##")
|
74 |
+
st.write("##")
|
75 |
+
|
76 |
+
#Create 2 columns to add github repo and huggging face repo
|
77 |
+
left_col, right_col = st.columns(2)
|
78 |
+
|
79 |
+
with left_col:
|
80 |
+
st.info('**Hugging Face: [@JavierGon12](https://huggingface.co/JavierGon12)**', icon="💡")
|
81 |
|
82 |
+
with right_col:
|
|
|
83 |
|
84 |
+
badge(type='github',name='JaviGon12')
|
85 |
+
#st.info('**GitHub: [@JaviGon12](https://github.com/JaviGon12)**', icon="💻")
|
86 |
|
|
|
87 |
|
|
|
88 |
|
89 |
|
logo retraced 2.png
ADDED
pages/Image to text.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import Pix2StructProcessor, Pix2StructForConditionalGeneration
|
2 |
+
import requests
|
3 |
+
from PIL import Image
|
4 |
+
import streamlit as st
|
5 |
+
|
6 |
+
processor = Pix2StructProcessor.from_pretrained('google/deplot')
|
7 |
+
model = Pix2StructForConditionalGeneration.from_pretrained('google/deplot')
|
8 |
+
|
9 |
+
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
|
10 |
+
|
11 |
+
if document == None:
|
12 |
+
st.write("Please upload the document in the box above")
|
13 |
+
else:
|
14 |
+
image = Image.open(document)
|
15 |
+
st.image(image,"Document uploaded")
|
16 |
+
|
17 |
+
inputs = processor(images=image, text="Generate underlying data table of the figure below:", return_tensors="pt")
|
18 |
+
predictions = model.generate(**inputs, max_new_tokens=512)
|
19 |
+
st.write(processor.decode(predictions[0], skip_special_tokens=True))
|
pages/Question Answering.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import streamlit as st
|
3 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
4 |
+
from datasets import load_dataset
|
5 |
+
import torch
|
6 |
+
import os
|
7 |
+
from PIL import Image
|
8 |
+
import PyPDF2
|
9 |
+
from pypdf.errors import PdfReadError
|
10 |
+
from pypdf import PdfReader
|
11 |
+
import pypdfium2 as pdfium
|
12 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
13 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa")
|
14 |
+
|
15 |
+
device ="cpu"
|
16 |
+
model.to(device)
|
17 |
+
|
18 |
+
#create uploader
|
19 |
+
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
|
20 |
+
|
21 |
+
question = st.text_input(str("Insert here you question?"))
|
22 |
+
|
23 |
+
if document == None:
|
24 |
+
st.write("Please upload the document in the box above")
|
25 |
+
else:
|
26 |
+
try:
|
27 |
+
PdfReader(document)
|
28 |
+
pdf = pdfium.PdfDocument(document)
|
29 |
+
page = pdf.get_page(0)
|
30 |
+
pil_image = page.render(scale = 300/72).to_pil()
|
31 |
+
#st.image(pil_image, caption="Document uploaded", use_column_width=True)
|
32 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
33 |
+
#question = "What's the total amount?"
|
34 |
+
prompt = task_prompt.replace("{user_input}", question)
|
35 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
36 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
37 |
+
outputs = model.generate(
|
38 |
+
pixel_values.to(device),
|
39 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
40 |
+
max_length=model.decoder.config.max_position_embeddings,
|
41 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
42 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
43 |
+
use_cache=True,
|
44 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
45 |
+
return_dict_in_generate=True,
|
46 |
+
)
|
47 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
48 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
49 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
50 |
+
st.image(pil_image,"Document uploaded")
|
51 |
+
st.write(processor.token2json(sequence))
|
52 |
+
print(processor.token2json(sequence))
|
53 |
+
|
54 |
+
|
55 |
+
except PdfReadError:
|
56 |
+
#image = Image.open(document)
|
57 |
+
#st.image(document, caption="Document uploaded", use_column_width=False)
|
58 |
+
# prepare decoder inputs
|
59 |
+
document = Image.open(document)
|
60 |
+
|
61 |
+
task_prompt = "<s_docvqa><s_question>{user_input}</s_question><s_answer>"
|
62 |
+
#question = "What's the total amount?"
|
63 |
+
prompt = task_prompt.replace("{user_input}", question)
|
64 |
+
decoder_input_ids = processor.tokenizer(prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
65 |
+
pixel_values = processor(document, return_tensors="pt").pixel_values
|
66 |
+
|
67 |
+
outputs = model.generate(
|
68 |
+
pixel_values.to(device),
|
69 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
70 |
+
max_length=model.decoder.config.max_position_embeddings,
|
71 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
72 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
73 |
+
use_cache=True,
|
74 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
75 |
+
return_dict_in_generate=True,
|
76 |
+
)
|
77 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
78 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
79 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
80 |
+
st.image(document,"Document uploaded")
|
81 |
+
st.write(processor.token2json(sequence))
|
82 |
+
|
83 |
+
|
84 |
+
|
85 |
+
|
pages/Speech Recognition.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, WhisperForConditionalGeneration
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
import torchaudio
|
7 |
+
from transformers import pipeline
|
8 |
+
from streamlit_mic_recorder import mic_recorder,speech_to_text
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
option = st.selectbox("How do you want to import the audio file?",("Microphone","Upload file"))
|
13 |
+
if option == "Microphone":
|
14 |
+
# Load your own audio file
|
15 |
+
st.write("Record your voice, and play the recorded audio:")
|
16 |
+
audio = mic_recorder(start_prompt="Press the botton to start recording ⏺️",stop_prompt="Press the botton to stop to stop the recording⏹️",key='recorder')
|
17 |
+
|
18 |
+
if audio == None:
|
19 |
+
st.write("Please start the recording in the box above")
|
20 |
+
else:
|
21 |
+
st.audio(audio["bytes"])
|
22 |
+
|
23 |
+
elif option == "Upload file":
|
24 |
+
audio = st.file_uploader(label="Upload your audio file here",type=["wav",'mp3'])
|
25 |
+
if audio:
|
26 |
+
st.audio(audio)
|
27 |
+
|
28 |
+
option_language = st.selectbox(
|
29 |
+
'Select the language of your audio',
|
30 |
+
('English', 'Spanish', 'German','French','Chinese'))
|
31 |
+
|
32 |
+
|
33 |
+
if audio == None:
|
34 |
+
st.write("Please upload the audio in the box above")
|
35 |
+
|
36 |
+
|
37 |
+
else:
|
38 |
+
if option_language == "English":
|
39 |
+
def transcribe_audio(audio_file):
|
40 |
+
# Load the audio file
|
41 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
42 |
+
|
43 |
+
# Ensure mono-channel audio
|
44 |
+
if waveform.shape[0] > 1:
|
45 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
46 |
+
|
47 |
+
# Convert to a 16kHz sample rate if not already
|
48 |
+
if sample_rate != 16000:
|
49 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
50 |
+
|
51 |
+
# Convert to a list of integers
|
52 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
53 |
+
|
54 |
+
# Use Hugging Face's ASR pipeline
|
55 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="openai/whisper-large-v2")
|
56 |
+
|
57 |
+
# Transcribe the audio
|
58 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
59 |
+
|
60 |
+
return transcript
|
61 |
+
|
62 |
+
transcription = transcribe_audio(audio)
|
63 |
+
st.write("Here is your transcription:")
|
64 |
+
st.write(transcription)
|
65 |
+
|
66 |
+
elif option_language == 'Spanish':
|
67 |
+
|
68 |
+
def transcribe_audio(audio_file):
|
69 |
+
|
70 |
+
# Load the audio file
|
71 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
72 |
+
|
73 |
+
# Ensure mono-channel audio
|
74 |
+
if waveform.shape[0] > 1:
|
75 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
76 |
+
|
77 |
+
# Convert to a 16kHz sample rate if not already
|
78 |
+
if sample_rate != 16000:
|
79 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
80 |
+
|
81 |
+
# Convert to a list of integers
|
82 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
83 |
+
|
84 |
+
# Use Hugging Face's ASR pipeline
|
85 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="Sandiago21/whisper-large-v2-spanish")
|
86 |
+
|
87 |
+
# Transcribe the audio
|
88 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
89 |
+
|
90 |
+
return transcript
|
91 |
+
|
92 |
+
transcription = transcribe_audio(audio)
|
93 |
+
st.write("Aqui tienes tu transcripcion:")
|
94 |
+
st.write(transcription)
|
95 |
+
elif option_language == 'German':
|
96 |
+
def transcribe_audio(audio_file):
|
97 |
+
|
98 |
+
# Load the audio file
|
99 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
100 |
+
|
101 |
+
# Ensure mono-channel audio
|
102 |
+
if waveform.shape[0] > 1:
|
103 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
104 |
+
|
105 |
+
# Convert to a 16kHz sample rate if not already
|
106 |
+
if sample_rate != 16000:
|
107 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
108 |
+
|
109 |
+
# Convert to a list of integers
|
110 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
111 |
+
|
112 |
+
# Use Hugging Face's ASR pipeline
|
113 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="primeline/whisper-large-v3-german")
|
114 |
+
|
115 |
+
# Transcribe the audio
|
116 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
117 |
+
|
118 |
+
return transcript
|
119 |
+
|
120 |
+
transcription = transcribe_audio(audio)
|
121 |
+
st.write("Hier ist Ihre Transkription:")
|
122 |
+
st.write(transcription)
|
123 |
+
elif option_language == "French":
|
124 |
+
def transcribe_audio(audio_file):
|
125 |
+
|
126 |
+
# Load the audio file
|
127 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
128 |
+
|
129 |
+
# Ensure mono-channel audio
|
130 |
+
if waveform.shape[0] > 1:
|
131 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
132 |
+
|
133 |
+
# Convert to a 16kHz sample rate if not already
|
134 |
+
if sample_rate != 16000:
|
135 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
136 |
+
|
137 |
+
# Convert to a list of integers
|
138 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
139 |
+
|
140 |
+
# Use Hugging Face's ASR pipeline
|
141 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="bofenghuang/whisper-large-v2-french")
|
142 |
+
|
143 |
+
# Transcribe the audio
|
144 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
145 |
+
|
146 |
+
return transcript
|
147 |
+
|
148 |
+
transcription = transcribe_audio(audio)
|
149 |
+
st.write("Ici, vous avez votre transcription")
|
150 |
+
st.write(transcription)
|
151 |
+
|
152 |
+
elif option_language == "Chinese":
|
153 |
+
def transcribe_audio(audio_file):
|
154 |
+
|
155 |
+
# Load the audio file
|
156 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
157 |
+
|
158 |
+
# Ensure mono-channel audio
|
159 |
+
if waveform.shape[0] > 1:
|
160 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
161 |
+
|
162 |
+
# Convert to a 16kHz sample rate if not already
|
163 |
+
if sample_rate != 16000:
|
164 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
165 |
+
|
166 |
+
# Convert to a list of integers
|
167 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
168 |
+
|
169 |
+
# Use Hugging Face's ASR pipeline
|
170 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="yi-ching/whisper-tiny-chinese-test")
|
171 |
+
|
172 |
+
# Transcribe the audio
|
173 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
174 |
+
|
175 |
+
return transcript
|
176 |
+
|
177 |
+
transcription = transcribe_audio(audio)
|
178 |
+
st.write("这是您的转录。")
|
179 |
+
st.write(transcription)
|
180 |
+
|
pages/Summarization.py
ADDED
@@ -0,0 +1,109 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import BartForConditionalGeneration, BartTokenizer
|
2 |
+
import streamlit as st
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, WhisperForConditionalGeneration
|
5 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
6 |
+
import torchaudio
|
7 |
+
from transformers import pipeline
|
8 |
+
|
9 |
+
# Load your own audio file
|
10 |
+
|
11 |
+
audio = st.file_uploader(label="Upload your audio file here",type=["wav",'mp3'])
|
12 |
+
|
13 |
+
option_language = st.selectbox(
|
14 |
+
'Select the language of your audio',
|
15 |
+
('English', 'Spanish', 'German','French','Chinese'))
|
16 |
+
|
17 |
+
if audio == None:
|
18 |
+
st.write("Please upload the audio in the box above")
|
19 |
+
|
20 |
+
|
21 |
+
|
22 |
+
else:
|
23 |
+
if option_language == "English":
|
24 |
+
def transcribe_audio(audio_file):
|
25 |
+
# Load the audio file
|
26 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
27 |
+
|
28 |
+
# Ensure mono-channel audio
|
29 |
+
if waveform.shape[0] > 1:
|
30 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
31 |
+
|
32 |
+
# Convert to a 16kHz sample rate if not already
|
33 |
+
if sample_rate != 16000:
|
34 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
35 |
+
|
36 |
+
# Convert to a list of integers
|
37 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
38 |
+
|
39 |
+
# Use Hugging Face's ASR pipeline
|
40 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-base-960h")
|
41 |
+
|
42 |
+
# Transcribe the audio
|
43 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
44 |
+
|
45 |
+
return transcript
|
46 |
+
|
47 |
+
transcription = transcribe_audio(audio)
|
48 |
+
print("Transcription",transcription)
|
49 |
+
|
50 |
+
## Inititate Summary Model
|
51 |
+
tokenizer_summary = BartTokenizer.from_pretrained("facebook/bart-large-cnn")
|
52 |
+
model_summary = BartForConditionalGeneration.from_pretrained("facebook/bart-large-cnn")
|
53 |
+
|
54 |
+
|
55 |
+
def summarize_text(text, model, tokenizer, max_length=100):
|
56 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
57 |
+
summary_ids = model.generate(input_ids, max_length=max_length, num_beams=4, early_stopping=True)
|
58 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
59 |
+
|
60 |
+
|
61 |
+
summary = summarize_text(transcription['text'], model_summary, tokenizer_summary)
|
62 |
+
st.write("Here is your summary!")
|
63 |
+
st.write(summary)
|
64 |
+
|
65 |
+
|
66 |
+
elif option_language == 'Spanish':
|
67 |
+
|
68 |
+
def transcribe_audio(audio_file):
|
69 |
+
|
70 |
+
# Load the audio file
|
71 |
+
waveform, sample_rate = torchaudio.load(audio_file)
|
72 |
+
|
73 |
+
# Ensure mono-channel audio
|
74 |
+
if waveform.shape[0] > 1:
|
75 |
+
waveform = torch.mean(waveform, dim=0, keepdim=True)
|
76 |
+
|
77 |
+
# Convert to a 16kHz sample rate if not already
|
78 |
+
if sample_rate != 16000:
|
79 |
+
waveform = torchaudio.transforms.Resample(sample_rate, 16000)(waveform)
|
80 |
+
|
81 |
+
# Convert to a list of integers
|
82 |
+
audio_input = waveform.squeeze().numpy().astype(int).tolist()
|
83 |
+
|
84 |
+
# Use Hugging Face's ASR pipeline
|
85 |
+
asr_pipeline = pipeline("automatic-speech-recognition", model="Sandiago21/whisper-large-v2-spanish")
|
86 |
+
|
87 |
+
# Transcribe the audio
|
88 |
+
transcript = asr_pipeline(waveform.numpy()[0])
|
89 |
+
|
90 |
+
return transcript
|
91 |
+
|
92 |
+
transcription = transcribe_audio(audio)
|
93 |
+
print("Aqui tienes tu transcripción:",transcription)
|
94 |
+
|
95 |
+
## Inititate Summary Model
|
96 |
+
|
97 |
+
tokenizer_summary = AutoTokenizer.from_pretrained("facebook/mbart-large-50", src_lang="es_XX")
|
98 |
+
model_summary = AutoModelForSeq2SeqLM.from_pretrained("facebook/mbart-large-50")
|
99 |
+
|
100 |
+
|
101 |
+
def summarize_text(text, model, tokenizer, max_length=100):
|
102 |
+
input_ids = tokenizer.encode(text, return_tensors="pt")
|
103 |
+
summary_ids = model.generate(input_ids, max_length=max_length, num_beams=4, early_stopping=True)
|
104 |
+
return tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
105 |
+
|
106 |
+
|
107 |
+
summary = summarize_text(transcription['text'], model_summary, tokenizer_summary)
|
108 |
+
st.write("Aqui tienes tu resumen!")
|
109 |
+
st.write(summary)
|
pages/Text Classification.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
from transformers import DonutProcessor, VisionEncoderDecoderModel
|
3 |
+
from datasets import load_dataset
|
4 |
+
import torch
|
5 |
+
import streamlit as st
|
6 |
+
from PIL import Image
|
7 |
+
import PyPDF2
|
8 |
+
from pypdf.errors import PdfReadError
|
9 |
+
from pypdf import PdfReader
|
10 |
+
import pypdfium2 as pdfium
|
11 |
+
|
12 |
+
document = st.file_uploader(label="Upload the document you want to explore",type=["png",'jpg', "jpeg","pdf"])
|
13 |
+
|
14 |
+
|
15 |
+
model_option = st.selectbox("Select the output of the model:",["Classification","Extract Info"])
|
16 |
+
if model_option == "Classification":
|
17 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
18 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-rvlcdip")
|
19 |
+
|
20 |
+
device = "cpu"
|
21 |
+
model.to(device)
|
22 |
+
# load document image
|
23 |
+
if document == None:
|
24 |
+
st.write("Please upload the document in the box above")
|
25 |
+
else:
|
26 |
+
try:
|
27 |
+
PdfReader(document)
|
28 |
+
pdf = pdfium.PdfDocument(document)
|
29 |
+
page = pdf.get_page(0)
|
30 |
+
pil_image = page.render(scale = 300/72).to_pil()
|
31 |
+
|
32 |
+
task_prompt = "<s_rvlcdip>"
|
33 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
34 |
+
|
35 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
36 |
+
|
37 |
+
outputs = model.generate(
|
38 |
+
pixel_values.to(device),
|
39 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
40 |
+
max_length=model.decoder.config.max_position_embeddings,
|
41 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
42 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
43 |
+
use_cache=True,
|
44 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
45 |
+
return_dict_in_generate=True,
|
46 |
+
)
|
47 |
+
|
48 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
49 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
50 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
51 |
+
st.image(pil_image,"Document uploaded")
|
52 |
+
st.write(processor.token2json(sequence))
|
53 |
+
|
54 |
+
except PdfReadError:
|
55 |
+
document = Image.open(document)
|
56 |
+
task_prompt = "<s_rvlcdip>"
|
57 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
58 |
+
|
59 |
+
pixel_values = processor(document, return_tensors="pt").pixel_values
|
60 |
+
|
61 |
+
outputs = model.generate(
|
62 |
+
pixel_values.to(device),
|
63 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
64 |
+
max_length=model.decoder.config.max_position_embeddings,
|
65 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
66 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
67 |
+
use_cache=True,
|
68 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
69 |
+
return_dict_in_generate=True,
|
70 |
+
)
|
71 |
+
|
72 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
73 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
74 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
75 |
+
st.image(document,"Document uploaded")
|
76 |
+
st.write(processor.token2json(sequence))
|
77 |
+
|
78 |
+
|
79 |
+
elif model_option == "Extract Info":
|
80 |
+
processor = DonutProcessor.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
81 |
+
model = VisionEncoderDecoderModel.from_pretrained("naver-clova-ix/donut-base-finetuned-cord-v2")
|
82 |
+
|
83 |
+
device = "cpu"
|
84 |
+
model.to(device)
|
85 |
+
# load document image
|
86 |
+
if document == None:
|
87 |
+
st.write("Please upload the document in the box above")
|
88 |
+
else:
|
89 |
+
try:
|
90 |
+
PdfReader(document)
|
91 |
+
pdf = pdfium.PdfDocument(document)
|
92 |
+
page = pdf.get_page(0)
|
93 |
+
pil_image = page.render(scale = 300/72).to_pil()
|
94 |
+
|
95 |
+
task_prompt = "<s_cord-v2>"
|
96 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
97 |
+
|
98 |
+
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
|
99 |
+
|
100 |
+
outputs = model.generate(
|
101 |
+
pixel_values.to(device),
|
102 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
103 |
+
max_length=model.decoder.config.max_position_embeddings,
|
104 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
105 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
106 |
+
use_cache=True,
|
107 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
108 |
+
return_dict_in_generate=True,
|
109 |
+
)
|
110 |
+
|
111 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
112 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
113 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
114 |
+
st.image(pil_image,"Document uploaded")
|
115 |
+
st.write(processor.token2json(sequence))
|
116 |
+
|
117 |
+
except PdfReadError:
|
118 |
+
document = Image.open(document)
|
119 |
+
task_prompt = "<s_cord-v2>"
|
120 |
+
decoder_input_ids = processor.tokenizer(task_prompt, add_special_tokens=False, return_tensors="pt").input_ids
|
121 |
+
|
122 |
+
pixel_values = processor(document, return_tensors="pt").pixel_values
|
123 |
+
|
124 |
+
outputs = model.generate(
|
125 |
+
pixel_values.to(device),
|
126 |
+
decoder_input_ids=decoder_input_ids.to(device),
|
127 |
+
max_length=model.decoder.config.max_position_embeddings,
|
128 |
+
pad_token_id=processor.tokenizer.pad_token_id,
|
129 |
+
eos_token_id=processor.tokenizer.eos_token_id,
|
130 |
+
use_cache=True,
|
131 |
+
bad_words_ids=[[processor.tokenizer.unk_token_id]],
|
132 |
+
return_dict_in_generate=True,
|
133 |
+
)
|
134 |
+
|
135 |
+
sequence = processor.batch_decode(outputs.sequences)[0]
|
136 |
+
sequence = sequence.replace(processor.tokenizer.eos_token, "").replace(processor.tokenizer.pad_token, "")
|
137 |
+
sequence = re.sub(r"<.*?>", "", sequence, count=1).strip() # remove first task start token
|
138 |
+
st.image(document,"Document uploaded")
|
139 |
+
st.write(processor.token2json(sequence))
|
pages/Text Generation.py
ADDED
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from streamlit_mic_recorder import mic_recorder,speech_to_text
|
3 |
+
|
4 |
+
state=st.session_state
|
5 |
+
|
6 |
+
if 'text_received' not in state:
|
7 |
+
state.text_received=[]
|
8 |
+
|
9 |
+
c1,c2=st.columns(2)
|
10 |
+
with c1:
|
11 |
+
st.write("Convert speech to text:")
|
12 |
+
with c2:
|
13 |
+
text=speech_to_text(language='en',use_container_width=True,just_once=True,key='STT')
|
14 |
+
|
15 |
+
if text:
|
16 |
+
state.text_received.append(text)
|
17 |
+
|
18 |
+
for text in state.text_received:
|
19 |
+
st.text(text)
|
20 |
+
|
21 |
+
st.write("Record your voice, and play the recorded audio:")
|
22 |
+
audio=mic_recorder(start_prompt="⏺️",stop_prompt="⏹️",key='recorder')
|
23 |
+
|
24 |
+
if audio:
|
25 |
+
st.audio(audio['bytes'])
|
pages/Text to Image.py
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from diffusers import LCMScheduler, AutoPipelineForText2Image
|
3 |
+
import streamlit as st
|
4 |
+
|
5 |
+
model_id = "stabilityai/stable-diffusion-xl-base-1.0"
|
6 |
+
adapter_id = "latent-consistency/lcm-lora-sdxl"
|
7 |
+
|
8 |
+
pipe = AutoPipelineForText2Image.from_pretrained(model_id, torch_dtype=torch.float32, variant="fp16")
|
9 |
+
pipe.scheduler = LCMScheduler.from_config(pipe.scheduler.config)
|
10 |
+
#pipe.to("cuda")
|
11 |
+
|
12 |
+
# load and fuse lcm lora
|
13 |
+
pipe.load_lora_weights(adapter_id)
|
14 |
+
pipe.fuse_lora()
|
15 |
+
prompt = st.text_input(str("Insert here you prompt?"))
|
16 |
+
|
17 |
+
# disable guidance_scale by passing 0
|
18 |
+
image = pipe(prompt=prompt, num_inference_steps=4, guidance_scale=0).images[0]
|
19 |
+
st.image(image,"Image generated by your prompt {promt}")
|
style.css
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
+
/* styles.css */
|
3 |
+
|
4 |
+
.title {
|
5 |
+
color: #ffffff;
|
6 |
+
font-size: 34px;
|
7 |
+
font-weight: bold;
|
8 |
+
font-family: monospace;
|
9 |
+
}
|
10 |
+
|
11 |
+
.custom-text {
|
12 |
+
color: #ffffff;
|
13 |
+
font-size: 20px;
|
14 |
+
font-weight: bold;
|
15 |
+
font-family: monospace;
|
16 |
+
|
17 |
+
}
|
18 |
+
|
19 |
+
.custom-background {
|
20 |
+
background-color: rgb(110, 159, 238);
|
21 |
+
padding: 12px;
|
22 |
+
font-size: 16px;
|
23 |
+
font-family: monospace;
|
24 |
+
|
25 |
+
}
|
26 |
+
|
27 |
+
/* Style inputs with type="text", type="email"and textareas */
|
28 |
+
input[type=text], input[type=email], textarea {
|
29 |
+
width: 100%; /* Full width */
|
30 |
+
padding: 12px; /* Some padding */
|
31 |
+
border: 1px solid #ccc; /* Gray border */
|
32 |
+
border-radius: 4px; /* Rounded borders */
|
33 |
+
box-sizing: border-box; /* Make sure that padding and width stays in place */
|
34 |
+
margin-top: 6px; /* Add a top margin */
|
35 |
+
margin-bottom: 16px; /* Bottom margin */
|
36 |
+
resize: vertical /* Allow the user to vertically resize the textarea (not horizontally) */
|
37 |
+
}
|
38 |
+
|
39 |
+
/* Style the submit button with a specific background color etc */
|
40 |
+
button[type=submit] {
|
41 |
+
background-color: #04AA6D;
|
42 |
+
color: white;
|
43 |
+
padding: 12px 20px;
|
44 |
+
border: none;
|
45 |
+
border-radius: 4px;
|
46 |
+
cursor: pointer;
|
47 |
+
}
|
48 |
+
|
49 |
+
/* When moving the mouse over the submit button, add a darker green color */
|
50 |
+
button[type=submit]:hover {
|
51 |
+
background-color: #45a049;
|
52 |
+
}
|
53 |
+
|
54 |
+
|