Spaces:
Runtime error
Runtime error
| # import streamlit as st | |
| # from PIL import Image | |
| # import base64 | |
| # import transformers | |
| # model_name = 'Intel/neural-chat-7b-v3-1' | |
| # model = transformers.AutoModelForCausalLM.from_pretrained(model_name) | |
| # tokenizer = transformers.AutoTokenizer.from_pretrained(model_name) | |
| # def generate_response(system_input, user_input): | |
| # # Format the input using the provided template | |
| # prompt = f"### System:\n{system_input}\n### User:\n{user_input}\n### Assistant:\n" | |
| # # Tokenize and encode the prompt | |
| # inputs = tokenizer.encode(prompt, return_tensors="pt", add_special_tokens=False) | |
| # # Generate a response | |
| # outputs = model.generate(inputs, max_length=1000, num_return_sequences=1) | |
| # response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # # Extract only the assistant's response | |
| # return response.split("### Assistant:\n")[-1] | |
| # # Example usage | |
| # system_input = "You are a employee in the customer succes department of a company called Retraced that works in sustainability and traceability" | |
| # prompt = st.text_input(str("Insert here you prompt?")) | |
| # response = generate_response(system_input, prompt) | |
| # st.write(response) | |