Javedalam commited on
Commit
e02d537
·
verified ·
1 Parent(s): 4d9c9bd

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +87 -0
app.py ADDED
@@ -0,0 +1,87 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch, threading, time, spaces
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
4
+
5
+ # ---------------------
6
+ # Model Config
7
+ # ---------------------
8
+ MODEL_ID = "WeiboAI/VibeThinker-1.5B"
9
+ SYSTEM_PROMPT = "You are a concise solver. Respond briefly with the correct answer."
10
+
11
+ print(f"⏳ Loading {MODEL_ID} …")
12
+ tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True)
13
+ model = AutoModelForCausalLM.from_pretrained(
14
+ MODEL_ID,
15
+ trust_remote_code=True,
16
+ low_cpu_mem_usage=True,
17
+ dtype=torch.bfloat16,
18
+ device_map="auto"
19
+ )
20
+ print("✅ Model ready.")
21
+
22
+ # ---------------------
23
+ # Chat Function
24
+ # ---------------------
25
+ @spaces.GPU(duration=60)
26
+ def chat_fn(message, history):
27
+ history = history or []
28
+ messages = [{"role": "system", "content": SYSTEM_PROMPT}]
29
+ for user_msg, bot_msg in history:
30
+ if user_msg: messages.append({"role": "user", "content": user_msg})
31
+ if bot_msg: messages.append({"role": "assistant", "content": bot_msg})
32
+ messages.append({"role": "user", "content": message})
33
+
34
+ prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
35
+ inputs = tokenizer([prompt], return_tensors="pt").to(model.device)
36
+
37
+ streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
38
+ gen_kwargs = dict(
39
+ **inputs,
40
+ streamer=streamer,
41
+ max_new_tokens=200,
42
+ temperature=0.3,
43
+ top_p=0.9,
44
+ do_sample=False,
45
+ pad_token_id=tokenizer.eos_token_id,
46
+ eos_token_id=tokenizer.eos_token_id,
47
+ repetition_penalty=1.15
48
+ )
49
+
50
+ thread = threading.Thread(target=model.generate, kwargs=gen_kwargs)
51
+ thread.start()
52
+
53
+ partial_text = ""
54
+ for new_text in streamer:
55
+ partial_text += new_text
56
+ yield partial_text
57
+
58
+ # ---------------------
59
+ # UI
60
+ # ---------------------
61
+ with gr.Blocks(theme=gr.themes.Soft()) as demo:
62
+ gr.Markdown("## 💡 VibeThinker-1.5B · Edge/ZeroGPU (Streaming Stable)")
63
+ chatbot = gr.Chatbot(label="Chatbot", height=500)
64
+ msg_box = gr.Textbox(label="Textbox", placeholder="Type here…")
65
+ send_btn = gr.Button("Send", variant="primary")
66
+
67
+ def user_message(message, history):
68
+ history = history or []
69
+ return "", history + [[message, None]]
70
+
71
+ def bot_response(history):
72
+ user_message = history[-1][0]
73
+ response = ""
74
+ for partial in chat_fn(user_message, history[:-1]):
75
+ response = partial
76
+ history[-1][1] = response
77
+ yield history
78
+
79
+ msg_box.submit(user_message, [msg_box, chatbot], [msg_box, chatbot], queue=False).then(
80
+ bot_response, chatbot, chatbot
81
+ )
82
+ send_btn.click(user_message, [msg_box, chatbot], [msg_box, chatbot], queue=False).then(
83
+ bot_response, chatbot, chatbot
84
+ )
85
+
86
+ if __name__ == "__main__":
87
+ demo.queue(max_size=16).launch()