Research_AI_Assistant / src /context_relevance_classifier.py
JatsTheAIGen's picture
relevant context upgraded v1
092a6ee
# context_relevance_classifier.py
"""
Context Relevance Classification Module
Uses LLM inference to identify relevant session contexts and generate dynamic summaries
"""
import logging
import asyncio
from typing import Dict, List, Optional
from datetime import datetime
logger = logging.getLogger(__name__)
class ContextRelevanceClassifier:
"""
Classify which session contexts are relevant to current conversation
and generate 2-line summaries for each relevant session
Performance Priority:
- LLM inference first (accuracy over speed)
- Parallel processing for multiple sessions
- Caching for repeated queries
- Graceful degradation on failures
"""
def __init__(self, llm_router):
"""
Initialize classifier with LLM router
Args:
llm_router: LLMRouter instance for inference calls
"""
self.llm_router = llm_router
self._relevance_cache = {} # Cache relevance scores to reduce LLM calls
self._summary_cache = {} # Cache summaries to avoid regenerating
self._cache_ttl = 3600 # 1 hour cache TTL
async def classify_and_summarize_relevant_contexts(self,
current_input: str,
session_contexts: List[Dict],
user_id: str = "Test_Any") -> Dict:
"""
Main method: Classify relevant contexts AND generate 2-line summaries
Performance Strategy:
1. Extract current topic (LLM inference - single call)
2. Calculate relevance in parallel (multiple LLM calls in parallel)
3. Generate summaries in parallel (only for relevant sessions)
Args:
current_input: Current user query
session_contexts: List of session context dictionaries
user_id: User identifier for logging
Returns:
{
'relevant_summaries': List[str], # 2-line summaries
'combined_user_context': str, # Combined summaries
'relevance_scores': Dict, # Scores for each session
'classification_confidence': float,
'topic': str,
'processing_time': float
}
"""
start_time = datetime.now()
try:
# Early exit: No contexts to process
if not session_contexts:
logger.info("No session contexts provided for classification")
return {
'relevant_summaries': [],
'combined_user_context': '',
'relevance_scores': {},
'classification_confidence': 1.0,
'topic': '',
'processing_time': 0.0
}
# Step 1: Extract current topic (LLM inference - OPTION A: Single call)
current_topic = await self._extract_current_topic(current_input)
logger.info(f"Extracted current topic: '{current_topic}'")
# Step 2: Calculate relevance scores (parallel processing for performance)
relevance_tasks = []
for session_ctx in session_contexts:
task = self._calculate_relevance_with_cache(
current_topic,
current_input,
session_ctx
)
relevance_tasks.append((session_ctx, task))
# Execute all relevance calculations in parallel
relevance_results = await asyncio.gather(
*[task for _, task in relevance_tasks],
return_exceptions=True
)
# Filter relevant sessions (score >= 0.6)
relevant_sessions = []
relevance_scores = {}
for (session_ctx, _), result in zip(relevance_tasks, relevance_results):
if isinstance(result, Exception):
logger.error(f"Error calculating relevance: {result}")
continue
session_id = session_ctx.get('session_id', 'unknown')
score = result.get('score', 0.0)
relevance_scores[session_id] = score
if score >= 0.6: # Relevance threshold
relevant_sessions.append({
'session_id': session_id,
'summary': session_ctx.get('summary', ''),
'relevance_score': score,
'interaction_contexts': session_ctx.get('interaction_contexts', []),
'created_at': session_ctx.get('created_at', '')
})
logger.info(f"Found {len(relevant_sessions)} relevant sessions out of {len(session_contexts)}")
# Step 3: Generate 2-line summaries for relevant sessions (parallel)
summary_tasks = []
for relevant_session in relevant_sessions:
task = self._generate_session_summary(
relevant_session,
current_input,
current_topic
)
summary_tasks.append(task)
# Execute all summaries in parallel
summary_results = await asyncio.gather(*summary_tasks, return_exceptions=True)
# Filter valid summaries
valid_summaries = []
for summary in summary_results:
if isinstance(summary, str) and summary.strip():
valid_summaries.append(summary.strip())
elif isinstance(summary, Exception):
logger.error(f"Error generating summary: {summary}")
# Step 4: Combine summaries into dynamic user context
combined_user_context = self._combine_summaries(valid_summaries, current_topic)
processing_time = (datetime.now() - start_time).total_seconds()
logger.info(
f"Relevance classification complete: {len(valid_summaries)} summaries, "
f"topic '{current_topic}', time: {processing_time:.2f}s"
)
return {
'relevant_summaries': valid_summaries,
'combined_user_context': combined_user_context,
'relevance_scores': relevance_scores,
'classification_confidence': 0.8,
'topic': current_topic,
'processing_time': processing_time
}
except Exception as e:
logger.error(f"Error in relevance classification: {e}", exc_info=True)
processing_time = (datetime.now() - start_time).total_seconds()
# SAFE FALLBACK: Return empty result (no degradation)
return {
'relevant_summaries': [],
'combined_user_context': '',
'relevance_scores': {},
'classification_confidence': 0.0,
'topic': '',
'processing_time': processing_time,
'error': str(e)
}
async def _extract_current_topic(self, user_input: str) -> str:
"""
Extract main topic from current input using LLM inference
Performance: Single LLM call with caching
"""
try:
# Check cache first
cache_key = f"topic_{hash(user_input[:200])}"
if cache_key in self._relevance_cache:
cached = self._relevance_cache[cache_key]
if cached.get('timestamp', 0) + self._cache_ttl > datetime.now().timestamp():
return cached['value']
if not self.llm_router:
# Fallback: Simple extraction
words = user_input.split()[:5]
return ' '.join(words) if words else 'general query'
prompt = f"""Extract the main topic (2-5 words) from this query:
Query: "{user_input}"
Respond with ONLY the topic name. Maximum 5 words."""
result = await self.llm_router.route_inference(
task_type="classification",
prompt=prompt,
max_tokens=20,
temperature=0.2 # Low temperature for consistency
)
topic = result.strip() if result else user_input[:100]
# Cache result
self._relevance_cache[cache_key] = {
'value': topic,
'timestamp': datetime.now().timestamp()
}
return topic
except Exception as e:
logger.error(f"Error extracting topic: {e}", exc_info=True)
# Fallback
return user_input[:100]
async def _calculate_relevance_with_cache(self,
current_topic: str,
current_input: str,
session_ctx: Dict) -> Dict:
"""
Calculate relevance score with caching to reduce LLM calls
Returns: {'score': float, 'cached': bool}
"""
try:
session_id = session_ctx.get('session_id', 'unknown')
session_summary = session_ctx.get('summary', '')
# Check cache
cache_key = f"rel_{session_id}_{hash(current_input[:100] + current_topic)}"
if cache_key in self._relevance_cache:
cached = self._relevance_cache[cache_key]
if cached.get('timestamp', 0) + self._cache_ttl > datetime.now().timestamp():
return {'score': cached['value'], 'cached': True}
# Calculate relevance
score = await self._calculate_relevance(
current_topic,
current_input,
session_summary
)
# Cache result
self._relevance_cache[cache_key] = {
'value': score,
'timestamp': datetime.now().timestamp()
}
return {'score': score, 'cached': False}
except Exception as e:
logger.error(f"Error in cached relevance calculation: {e}", exc_info=True)
return {'score': 0.5, 'cached': False} # Neutral score on error
async def _calculate_relevance(self,
current_topic: str,
current_input: str,
context_text: str) -> float:
"""
Calculate relevance score (0.0 to 1.0) using LLM inference
Performance: Single LLM call per session context
"""
try:
if not context_text:
return 0.0
if not self.llm_router:
# Fallback: Keyword matching
return self._simple_keyword_relevance(current_input, context_text)
# OPTION A: Direct relevance scoring (faster, single call)
# OPTION B: Detailed analysis (more accurate, more tokens)
# Choosing OPTION A for performance, but with quality prompt
prompt = f"""Rate the relevance (0.0 to 1.0) of this session context to the current conversation.
Current Topic: {current_topic}
Current Query: "{current_input[:200]}"
Session Context:
"{context_text[:500]}"
Consider:
- Topic similarity (0.0-1.0)
- Discussion depth alignment
- Information continuity
Respond with ONLY a number between 0.0 and 1.0 (e.g., 0.75)."""
result = await self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=10,
temperature=0.1 # Very low for consistency
)
if result:
try:
score = float(result.strip())
return max(0.0, min(1.0, score)) # Clamp to [0, 1]
except ValueError:
logger.warning(f"Could not parse relevance score: {result}")
# Fallback to keyword matching
return self._simple_keyword_relevance(current_input, context_text)
except Exception as e:
logger.error(f"Error calculating relevance: {e}", exc_info=True)
return 0.5 # Neutral score on error
def _simple_keyword_relevance(self, current_input: str, context_text: str) -> float:
"""Fallback keyword-based relevance calculation"""
try:
current_lower = current_input.lower()
context_lower = context_text.lower()
current_words = set(current_lower.split())
context_words = set(context_lower.split())
# Remove common stop words for better matching
stop_words = {'the', 'a', 'an', 'and', 'or', 'but', 'in', 'on', 'at', 'to', 'for', 'of', 'with', 'by'}
current_words = current_words - stop_words
context_words = context_words - stop_words
if not current_words:
return 0.5
# Jaccard similarity
intersection = len(current_words & context_words)
union = len(current_words | context_words)
return (intersection / union) if union > 0 else 0.0
except Exception:
return 0.5
async def _generate_session_summary(self,
session_data: Dict,
current_input: str,
current_topic: str) -> str:
"""
Generate 2-line summary for a relevant session context
Performance: LLM inference with caching and timeout protection
Builds depth and width of topic discussion
"""
try:
session_id = session_data.get('session_id', 'unknown')
session_summary = session_data.get('summary', '')
interaction_contexts = session_data.get('interaction_contexts', [])
# Check cache
cache_key = f"summary_{session_id}_{hash(current_topic)}"
if cache_key in self._summary_cache:
cached = self._summary_cache[cache_key]
if cached.get('timestamp', 0) + self._cache_ttl > datetime.now().timestamp():
return cached['value']
# Validation: Ensure content available
if not session_summary and not interaction_contexts:
logger.warning(f"No content for summarization: session {session_id}")
return f"Previous discussion on {current_topic}.\nContext details unavailable."
# Build context text with limits
session_context_text = session_summary[:500] if session_summary else ""
if interaction_contexts:
recent_interactions = "\n".join([
ic.get('summary', '')[:100]
for ic in interaction_contexts[-5:]
if ic.get('summary')
])
if recent_interactions:
session_context_text = f"{session_context_text}\n\nRecent interactions:\n{recent_interactions[:400]}"
# Limit total context
if len(session_context_text) > 1000:
session_context_text = session_context_text[:1000] + "..."
if not self.llm_router:
# Fallback
return f"Previous {current_topic} discussion.\nCovered: {session_summary[:80]}..."
# LLM-based summarization with timeout
prompt = f"""Generate a precise 2-line summary (maximum 2 sentences, ~100 tokens total) that captures the depth and breadth of the topic discussion:
Current Topic: {current_topic}
Current Query: "{current_input[:150]}"
Previous Session Context:
{session_context_text}
Requirements:
- Line 1: Summarize the MAIN TOPICS/SUBJECTS discussed (breadth/width)
- Line 2: Summarize the DEPTH/LEVEL of discussion (technical depth, detail level, approach)
- Focus on relevance to: "{current_topic}"
- Keep total under 100 tokens
- Be specific about what was covered
Respond with ONLY the 2-line summary, no explanations."""
try:
result = await asyncio.wait_for(
self.llm_router.route_inference(
task_type="general_reasoning",
prompt=prompt,
max_tokens=100,
temperature=0.4
),
timeout=10.0 # 10 second timeout
)
except asyncio.TimeoutError:
logger.warning(f"Summary generation timeout for session {session_id}")
return f"Previous {current_topic} discussion.\nDepth and approach covered in prior session."
# Validate and format result
if result and isinstance(result, str) and result.strip():
summary = result.strip()
lines = [line.strip() for line in summary.split('\n') if line.strip()]
if len(lines) >= 1:
if len(lines) > 2:
combined = f"{lines[0]}\n{'. '.join(lines[1:])}"
formatted_summary = combined[:200]
else:
formatted_summary = '\n'.join(lines[:2])[:200]
# Ensure minimum quality
if len(formatted_summary) < 20:
formatted_summary = f"Previous {current_topic} discussion.\nDetails from previous session."
# Cache result
self._summary_cache[cache_key] = {
'value': formatted_summary,
'timestamp': datetime.now().timestamp()
}
return formatted_summary
else:
return f"Previous {current_topic} discussion.\nContext from previous session."
# Invalid result fallback
logger.warning(f"Invalid summary result for session {session_id}")
return f"Previous {current_topic} discussion.\nDepth and approach covered previously."
except Exception as e:
logger.error(f"Error generating session summary: {e}", exc_info=True)
session_summary = session_data.get('summary', '')[:100] if session_data.get('summary') else 'topic discussion'
return f"{session_summary}...\n{current_topic} discussion from previous session."
def _combine_summaries(self, summaries: List[str], current_topic: str) -> str:
"""
Combine multiple 2-line summaries into coherent user context
Builds width (multiple topics) and depth (summarized discussions)
"""
try:
if not summaries:
return ''
if len(summaries) == 1:
return summaries[0]
# Format combined summaries with topic focus
combined = f"Relevant Previous Discussions (Topic: {current_topic}):\n\n"
for idx, summary in enumerate(summaries, 1):
combined += f"[Session {idx}]\n{summary}\n\n"
# Add summary statement
combined += f"These sessions provide context for {current_topic} discussions, covering multiple aspects and depth levels."
return combined
except Exception as e:
logger.error(f"Error combining summaries: {e}", exc_info=True)
# Simple fallback
return '\n\n'.join(summaries[:5])