Spaces:
				
			
			
	
			
			
		Sleeping
		
	
	
	
			
			
	
	
	
	
		
		
		Sleeping
		
	Upload test_image_fusion.py
Browse files- test_image_fusion.py +182 -0
    	
        test_image_fusion.py
    ADDED
    
    | @@ -0,0 +1,182 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import torch.nn.functional as F
         | 
| 2 | 
            +
            import torch
         | 
| 3 | 
            +
            import torch.nn as nn
         | 
| 4 | 
            +
            import torch.optim as optim
         | 
| 5 | 
            +
            from torch.utils.data import DataLoader
         | 
| 6 | 
            +
            from sklearn.metrics import accuracy_score, precision_recall_fscore_support
         | 
| 7 | 
            +
            from torch.optim.lr_scheduler import CosineAnnealingLR
         | 
| 8 | 
            +
            from tqdm import tqdm
         | 
| 9 | 
            +
            import warnings
         | 
| 10 | 
            +
            warnings.filterwarnings("ignore")
         | 
| 11 | 
            +
            import cv2
         | 
| 12 | 
            +
            import numpy as np
         | 
| 13 | 
            +
            import matplotlib.pyplot as plt
         | 
| 14 | 
            +
            import pywt
         | 
| 15 | 
            +
             | 
| 16 | 
            +
            from utils.config import cfg
         | 
| 17 | 
            +
            from dataset.real_n_fake_dataloader import Extracted_Frames_Dataset
         | 
| 18 | 
            +
            from utils.data_transforms import get_transforms_train, get_transforms_val
         | 
| 19 | 
            +
            from net.Multimodalmodel import Image_n_DCT
         | 
| 20 | 
            +
             | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            import os
         | 
| 24 | 
            +
            import json
         | 
| 25 | 
            +
            import torch
         | 
| 26 | 
            +
            from torchvision import transforms
         | 
| 27 | 
            +
            from torch.utils.data import DataLoader, Dataset
         | 
| 28 | 
            +
            from PIL import Image
         | 
| 29 | 
            +
            import numpy as np
         | 
| 30 | 
            +
            import pandas as pd
         | 
| 31 | 
            +
            import cv2
         | 
| 32 | 
            +
            import argparse
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            class Test_Dataset(Dataset):
         | 
| 35 | 
            +
                def __init__(self, test_data_path = None, transform = None, image_path = None, multi_modal = "dct"):
         | 
| 36 | 
            +
                    """
         | 
| 37 | 
            +
                    Args:   
         | 
| 38 | 
            +
                    returns:
         | 
| 39 | 
            +
                        """
         | 
| 40 | 
            +
                    self.multi_modal = multi_modal
         | 
| 41 | 
            +
                    if test_data_path is None and image_path is not None:
         | 
| 42 | 
            +
                        self.dataset = [[image_path, 2]]
         | 
| 43 | 
            +
                        self.transform = transform
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                    else:
         | 
| 46 | 
            +
                        self.transform = transform
         | 
| 47 | 
            +
                        
         | 
| 48 | 
            +
                        self.real_data = os.listdir(test_data_path + "/real")
         | 
| 49 | 
            +
                        self.fake_data = os.listdir(test_data_path + "/fake")
         | 
| 50 | 
            +
                        self.dataset = []
         | 
| 51 | 
            +
                        for image in self.real_data:
         | 
| 52 | 
            +
                            self.dataset.append([test_data_path + "/real/" + image, 1])
         | 
| 53 | 
            +
             | 
| 54 | 
            +
                        for image in self.fake_data:
         | 
| 55 | 
            +
                            self.dataset.append([test_data_path + "/fake/" + image, 0])
         | 
| 56 | 
            +
                            
         | 
| 57 | 
            +
                def __len__(self):
         | 
| 58 | 
            +
                    return len(self.dataset)
         | 
| 59 | 
            +
             | 
| 60 | 
            +
                def __getitem__(self, idx):
         | 
| 61 | 
            +
                    sample_input = self.get_sample_input(idx)
         | 
| 62 | 
            +
                    return sample_input
         | 
| 63 | 
            +
                
         | 
| 64 | 
            +
                def get_sample_input(self, idx):
         | 
| 65 | 
            +
                    rgb_image = self.get_rgb_image(idx)
         | 
| 66 | 
            +
                    label = self.get_label(idx) 
         | 
| 67 | 
            +
                    if self.multi_modal == "dct":
         | 
| 68 | 
            +
                        dct_image = self.get_dct_image(idx)
         | 
| 69 | 
            +
                        sample_input = {"rgb_image": rgb_image, "dct_image": dct_image, "label": label}
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                    # dct_image = self.get_dct_image(idx)
         | 
| 72 | 
            +
                    elif self.multi_modal == "fft":
         | 
| 73 | 
            +
                        fft_image = self.get_fft_image(idx)
         | 
| 74 | 
            +
                        sample_input = {"rgb_image": rgb_image, "dct_image": fft_image, "label": label}
         | 
| 75 | 
            +
                    elif self.multi_modal == "hh":
         | 
| 76 | 
            +
                        hh_image = self.get_hh_image(idx)
         | 
| 77 | 
            +
                        sample_input = {"rgb_image": rgb_image, "dct_image": hh_image, "label": label}
         | 
| 78 | 
            +
                    else:
         | 
| 79 | 
            +
                        AssertionError("multi_modal must be one of (dct:discrete cosine transform, fft: fast forier transform, hh)")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                    return sample_input
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                
         | 
| 84 | 
            +
                def get_fft_image(self, idx):
         | 
| 85 | 
            +
                    gray_image_path = self.dataset[idx][0]
         | 
| 86 | 
            +
                    gray_image = cv2.imread(gray_image_path, cv2.IMREAD_GRAYSCALE)
         | 
| 87 | 
            +
                    fft_image = self.compute_fft(gray_image)
         | 
| 88 | 
            +
                    if self.transform:
         | 
| 89 | 
            +
                        fft_image = self.transform(fft_image)
         | 
| 90 | 
            +
                    
         | 
| 91 | 
            +
                    return fft_image
         | 
| 92 | 
            +
             | 
| 93 | 
            +
                
         | 
| 94 | 
            +
                def compute_fft(self, image):
         | 
| 95 | 
            +
                    f = np.fft.fft2(image)
         | 
| 96 | 
            +
                    fshift = np.fft.fftshift(f)
         | 
| 97 | 
            +
                    magnitude_spectrum = 20 * np.log(np.abs(fshift) + 1)  # Add 1 to avoid log(0)
         | 
| 98 | 
            +
                    return magnitude_spectrum
         | 
| 99 | 
            +
             | 
| 100 | 
            +
             | 
| 101 | 
            +
                def get_hh_image(self, idx):
         | 
| 102 | 
            +
                    gray_image_path = self.dataset[idx][0]
         | 
| 103 | 
            +
                    gray_image = cv2.imread(gray_image_path, cv2.IMREAD_GRAYSCALE)
         | 
| 104 | 
            +
                    hh_image = self.compute_hh(gray_image)
         | 
| 105 | 
            +
                    if self.transform:
         | 
| 106 | 
            +
                        hh_image = self.transform(hh_image)
         | 
| 107 | 
            +
                    return hh_image
         | 
| 108 | 
            +
                
         | 
| 109 | 
            +
                def compute_hh(self, image):
         | 
| 110 | 
            +
                    coeffs2 = pywt.dwt2(image, 'haar')
         | 
| 111 | 
            +
                    LL, (LH, HL, HH) = coeffs2
         | 
| 112 | 
            +
                    return HH
         | 
| 113 | 
            +
                    
         | 
| 114 | 
            +
                def get_rgb_image(self, idx):
         | 
| 115 | 
            +
                    rgb_image_path = self.dataset[idx][0]
         | 
| 116 | 
            +
                    rgb_image = Image.open(rgb_image_path)
         | 
| 117 | 
            +
                    if self.transform:
         | 
| 118 | 
            +
                        rgb_image = self.transform(rgb_image)
         | 
| 119 | 
            +
                    return rgb_image
         | 
| 120 | 
            +
                
         | 
| 121 | 
            +
                def get_dct_image(self, idx):
         | 
| 122 | 
            +
                    rgb_image_path = self.dataset[idx][0]
         | 
| 123 | 
            +
                    rgb_image = cv2.imread(rgb_image_path)
         | 
| 124 | 
            +
                    dct_image = self.compute_dct_color(rgb_image)
         | 
| 125 | 
            +
                    if self.transform:
         | 
| 126 | 
            +
                        dct_image = self.transform(dct_image)
         | 
| 127 | 
            +
                    
         | 
| 128 | 
            +
                    return dct_image
         | 
| 129 | 
            +
                
         | 
| 130 | 
            +
                def get_label(self, idx):
         | 
| 131 | 
            +
                    return self.dataset[idx][1]
         | 
| 132 | 
            +
                
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                def compute_dct_color(self, image):
         | 
| 135 | 
            +
                    image_float = np.float32(image)
         | 
| 136 | 
            +
                    dct_image = np.zeros_like(image_float)
         | 
| 137 | 
            +
                    for i in range(3):  
         | 
| 138 | 
            +
                        dct_image[:, :, i] = cv2.dct(image_float[:, :, i])
         | 
| 139 | 
            +
                    return dct_image
         | 
| 140 | 
            +
             | 
| 141 | 
            +
                
         | 
| 142 | 
            +
            class Test:
         | 
| 143 | 
            +
                def __init__(self, model_paths = [ 'weights/faceswap-hh-best_model.pth',
         | 
| 144 | 
            +
                                                  'weights/faceswap-fft-best_model.pth',
         | 
| 145 | 
            +
                                                                                        ],
         | 
| 146 | 
            +
                             multi_modal = ["hh","fct"]):
         | 
| 147 | 
            +
                    self.model_path = model_paths
         | 
| 148 | 
            +
                    self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
         | 
| 149 | 
            +
                    print(self.device)
         | 
| 150 | 
            +
                    # Load the model
         | 
| 151 | 
            +
                    self.model1 = Image_n_DCT()
         | 
| 152 | 
            +
                    self.model1.load_state_dict(torch.load(self.model_path[0], map_location = self.device))
         | 
| 153 | 
            +
                    self.model1.to(self.device)
         | 
| 154 | 
            +
                    self.model1.eval()
         | 
| 155 | 
            +
             | 
| 156 | 
            +
                    self.model2 = Image_n_DCT()
         | 
| 157 | 
            +
                    self.model2.load_state_dict(torch.load(self.model_path[1], map_location = self.device))
         | 
| 158 | 
            +
                    self.model2.to(self.device)
         | 
| 159 | 
            +
                    self.model2.eval()
         | 
| 160 | 
            +
             | 
| 161 | 
            +
             | 
| 162 | 
            +
                    self.multi_modal = multi_modal
         | 
| 163 | 
            +
             | 
| 164 | 
            +
             | 
| 165 | 
            +
                def testimage(self, image_path):
         | 
| 166 | 
            +
                    test_dataset1 = Test_Dataset(transform = get_transforms_val(), image_path = image_path, multi_modal = self.multi_modal[0])
         | 
| 167 | 
            +
                    test_dataset2 = Test_Dataset(transform = get_transforms_val(), image_path = image_path, multi_modal = self.multi_modal[1])
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    inputs1 = test_dataset1[0]
         | 
| 170 | 
            +
                    rgb_image1, dct_image1 = inputs1['rgb_image'].to(self.device), inputs1['dct_image'].to(self.device)
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                    inputs2 = test_dataset2[0]
         | 
| 173 | 
            +
                    rgb_image2, dct_image2 = inputs2['rgb_image'].to(self.device), inputs2['dct_image'].to(self.device)
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                    output1 = self.model1(rgb_image1.unsqueeze(0), dct_image1.unsqueeze(0))
         | 
| 176 | 
            +
             | 
| 177 | 
            +
                    output2 = self.model2(rgb_image2.unsqueeze(0), dct_image2.unsqueeze(0))
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    output = (output1 + output2)/2
         | 
| 180 | 
            +
                    # print(output.shape)
         | 
| 181 | 
            +
                    _, predicted = torch.max(output.data, 1)
         | 
| 182 | 
            +
                    return 'real' if predicted==1 else 'fake'
         |