JasperV13 commited on
Commit
94d7cca
·
verified ·
1 Parent(s): 133964a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +92 -0
app.py ADDED
@@ -0,0 +1,92 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import torch
3
+ from transformers import AutoTokenizer, AutoModelForCausalLM
4
+
5
+ # Load the models and tokenizers
6
+ tokenizer1 = AutoTokenizer.from_pretrained("JasperV13/Fhamator-30000")
7
+ model1 = AutoModelForCausalLM.from_pretrained("JasperV13/Fhamator-30000")
8
+
9
+ tokenizer2 = AutoTokenizer.from_pretrained("JasperV13/Fhamator-SFT")
10
+ model2 = AutoModelForCausalLM.from_pretrained("JasperV13/Fhamator-SFT")
11
+
12
+ def generate_text_fhamator(input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature):
13
+ input_ids = tokenizer1.encode(input_text, return_tensors='pt')
14
+ output = model1.generate(
15
+ input_ids,
16
+ max_length=max_length,
17
+ num_return_sequences=num_return_sequences,
18
+ no_repeat_ngram_size=no_repeat_ngram_size,
19
+ top_k=top_k,
20
+ top_p=top_p,
21
+ temperature=temperature,
22
+ do_sample=True
23
+ )
24
+ generated_texts = [tokenizer1.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
25
+ return "\n\n".join(generated_texts)
26
+
27
+ def generate_text_sft(input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature):
28
+ inputs = tokenizer2(input_text, return_tensors="pt")
29
+ output = model2.generate(
30
+ inputs['input_ids'],
31
+ max_length=max_length,
32
+ num_return_sequences=num_return_sequences,
33
+ no_repeat_ngram_size=no_repeat_ngram_size,
34
+ top_k=top_k,
35
+ top_p=top_p,
36
+ temperature=temperature,
37
+ do_sample=True
38
+ )
39
+ generated_texts = [tokenizer2.decode(output[i], skip_special_tokens=True) for i in range(num_return_sequences)]
40
+ return "\n\n".join(generated_texts)
41
+
42
+ with gr.Blocks() as demo:
43
+ with gr.Row():
44
+ gr.Markdown("## 🤖✨ Fhamator: The Darija-Speaking Model")
45
+
46
+ with gr.Tab("📖 Explanation"):
47
+ gr.Markdown("""
48
+ # 📚 Explanation of the Work Done
49
+ Welcome to the **Fhamator** application! This app consists of three main tabs, each with a unique purpose:
50
+
51
+ 1. **🔍 Explanation**: Provides an overview of what this app does and how it works.
52
+ 2. **🧠 Fhamator Model**: Test the base 'Fhamator-30000' language model and tweak its hyperparameters to see how it performs.
53
+ 3. **🚀 Fhamator-SFT Model**: Experiment with the fine-tuned 'Fhamator-SFT' model, designed for more specific tasks, also with customizable hyperparameters.
54
+ """)
55
+
56
+ with gr.Tab("Test Fhamator-30000 Model"):
57
+ with gr.Group():
58
+ input_text = gr.Textbox(label="Input Prompt", value="المغرب هو دولة معروفة ب")
59
+ max_length = gr.Slider(50, 200, value=100, step=1, label="Max Length")
60
+ num_return_sequences = gr.Slider(1, 5, value=3, step=1, label="Number of Sequences")
61
+ no_repeat_ngram_size = gr.Slider(1, 5, value=2, step=1, label="No Repeat N-Gram Size")
62
+ top_k = gr.Slider(1, 100, value=50, step=1, label="Top K")
63
+ top_p = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="Top P")
64
+ temperature = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
65
+ output_text = gr.Textbox(label="Generated Texts", lines=8)
66
+ generate_btn = gr.Button("Generate")
67
+
68
+ generate_btn.click(
69
+ generate_text_fhamator,
70
+ inputs=[input_text, max_length, num_return_sequences, no_repeat_ngram_size, top_k, top_p, temperature],
71
+ outputs=output_text
72
+ )
73
+
74
+ with gr.Tab("Test Fhamator-SFT Model"):
75
+ with gr.Group():
76
+ input_text_sft = gr.Textbox(label="Instruction", value="السؤال :س - التاريخ المغربي؟\n\n: الجواب\n")
77
+ max_length = gr.Slider(50, 200, value=60, step=1, label="Max Length")
78
+ num_return_sequences = gr.Slider(1, 5, value=5, step=1, label="Number of Sequences")
79
+ no_repeat_ngram_size = gr.Slider(1, 5, value=2, step=1, label="No Repeat N-Gram Size")
80
+ top_k_sft = gr.Slider(1, 100, value=50, step=1, label="Top K")
81
+ top_p_sft = gr.Slider(0.0, 1.0, value=0.95, step=0.01, label="Top P")
82
+ temperature_sft = gr.Slider(0.1, 1.0, value=0.7, step=0.1, label="Temperature")
83
+ output_text_sft = gr.Textbox(label="Generated Texts", lines=8)
84
+ generate_btn_sft = gr.Button("Generate")
85
+
86
+ generate_btn_sft.click(
87
+ generate_text_sft,
88
+ inputs=[input_text_sft, max_length, num_return_sequences, no_repeat_ngram_size, top_k_sft, top_p_sft, temperature_sft],
89
+ outputs=output_text_sft
90
+ )
91
+
92
+ demo.launch(debug = True)