Spaces:
Configuration error
Configuration error
""" Attention Pool 2D | |
Implementations of 2D spatial feature pooling using multi-head attention instead of average pool. | |
Based on idea in CLIP by OpenAI, licensed Apache 2.0 | |
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py | |
Hacked together by / Copyright 2021 Ross Wightman | |
""" | |
from typing import Union, Tuple | |
import torch | |
import torch.nn as nn | |
from .helpers import to_2tuple | |
from .pos_embed import apply_rot_embed, RotaryEmbedding | |
from .weight_init import trunc_normal_ | |
class RotAttentionPool2d(nn.Module): | |
""" Attention based 2D feature pooling w/ rotary (relative) pos embedding. | |
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. | |
Adapted from the AttentionPool2d in CLIP w/ rotary embedding instead of learned embed. | |
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py | |
NOTE: While this impl does not require a fixed feature size, performance at differeing resolutions from | |
train varies widely and falls off dramatically. I'm not sure if there is a way around this... -RW | |
""" | |
def __init__( | |
self, | |
in_features: int, | |
out_features: int = None, | |
embed_dim: int = None, | |
num_heads: int = 4, | |
qkv_bias: bool = True, | |
): | |
super().__init__() | |
embed_dim = embed_dim or in_features | |
out_features = out_features or in_features | |
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(embed_dim, out_features) | |
self.num_heads = num_heads | |
assert embed_dim % num_heads == 0 | |
self.head_dim = embed_dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
self.pos_embed = RotaryEmbedding(self.head_dim) | |
trunc_normal_(self.qkv.weight, std=in_features ** -0.5) | |
nn.init.zeros_(self.qkv.bias) | |
def forward(self, x): | |
B, _, H, W = x.shape | |
N = H * W | |
x = x.reshape(B, -1, N).permute(0, 2, 1) | |
x = torch.cat([x.mean(1, keepdim=True), x], dim=1) | |
x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k, v = x[0], x[1], x[2] | |
qc, q = q[:, :, :1], q[:, :, 1:] | |
sin_emb, cos_emb = self.pos_embed.get_embed((H, W)) | |
q = apply_rot_embed(q, sin_emb, cos_emb) | |
q = torch.cat([qc, q], dim=2) | |
kc, k = k[:, :, :1], k[:, :, 1:] | |
k = apply_rot_embed(k, sin_emb, cos_emb) | |
k = torch.cat([kc, k], dim=2) | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1) | |
x = self.proj(x) | |
return x[:, 0] | |
class AttentionPool2d(nn.Module): | |
""" Attention based 2D feature pooling w/ learned (absolute) pos embedding. | |
This is a multi-head attention based replacement for (spatial) average pooling in NN architectures. | |
It was based on impl in CLIP by OpenAI | |
https://github.com/openai/CLIP/blob/3b473b0e682c091a9e53623eebc1ca1657385717/clip/model.py | |
NOTE: This requires feature size upon construction and well prevent adaptive sizing of the network. | |
""" | |
def __init__( | |
self, | |
in_features: int, | |
feat_size: Union[int, Tuple[int, int]], | |
out_features: int = None, | |
embed_dim: int = None, | |
num_heads: int = 4, | |
qkv_bias: bool = True, | |
): | |
super().__init__() | |
embed_dim = embed_dim or in_features | |
out_features = out_features or in_features | |
assert embed_dim % num_heads == 0 | |
self.feat_size = to_2tuple(feat_size) | |
self.qkv = nn.Linear(in_features, embed_dim * 3, bias=qkv_bias) | |
self.proj = nn.Linear(embed_dim, out_features) | |
self.num_heads = num_heads | |
self.head_dim = embed_dim // num_heads | |
self.scale = self.head_dim ** -0.5 | |
spatial_dim = self.feat_size[0] * self.feat_size[1] | |
self.pos_embed = nn.Parameter(torch.zeros(spatial_dim + 1, in_features)) | |
trunc_normal_(self.pos_embed, std=in_features ** -0.5) | |
trunc_normal_(self.qkv.weight, std=in_features ** -0.5) | |
nn.init.zeros_(self.qkv.bias) | |
def forward(self, x): | |
B, _, H, W = x.shape | |
N = H * W | |
assert self.feat_size[0] == H | |
assert self.feat_size[1] == W | |
x = x.reshape(B, -1, N).permute(0, 2, 1) | |
x = torch.cat([x.mean(1, keepdim=True), x], dim=1) | |
x = x + self.pos_embed.unsqueeze(0).to(x.dtype) | |
x = self.qkv(x).reshape(B, N + 1, 3, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4) | |
q, k, v = x[0], x[1], x[2] | |
attn = (q @ k.transpose(-2, -1)) * self.scale | |
attn = attn.softmax(dim=-1) | |
x = (attn @ v).transpose(1, 2).reshape(B, N + 1, -1) | |
x = self.proj(x) | |
return x[:, 0] | |