Spaces:
Configuration error
Configuration error
| from __future__ import absolute_import | |
| import json | |
| import typing | |
| import warnings | |
| from abc import ABC, ABCMeta, abstractmethod | |
| from typing import IO, Any, Callable, Dict, Optional, Tuple, Type, Union | |
| try: | |
| import yaml | |
| yaml_available = True | |
| except ImportError: | |
| yaml_available = False | |
| from custom_albumentations import __version__ | |
| __all__ = ["to_dict", "from_dict", "save", "load"] | |
| SERIALIZABLE_REGISTRY: Dict[str, "SerializableMeta"] = {} | |
| NON_SERIALIZABLE_REGISTRY: Dict[str, "SerializableMeta"] = {} | |
| def shorten_class_name(class_fullname: str) -> str: | |
| splitted = class_fullname.split(".") | |
| if len(splitted) == 1: | |
| return class_fullname | |
| top_module, *_, class_name = splitted | |
| if top_module == "albumentations": | |
| return class_name | |
| return class_fullname | |
| def get_shortest_class_fullname(cls: Type) -> str: | |
| class_fullname = "{cls.__module__}.{cls.__name__}".format(cls=cls) | |
| return shorten_class_name(class_fullname) | |
| class SerializableMeta(ABCMeta): | |
| """ | |
| A metaclass that is used to register classes in `SERIALIZABLE_REGISTRY` or `NON_SERIALIZABLE_REGISTRY` | |
| so they can be found later while deserializing transformation pipeline using classes full names. | |
| """ | |
| def __new__(mcs, name: str, bases: Tuple[type, ...], *args, **kwargs) -> "SerializableMeta": | |
| cls_obj = super().__new__(mcs, name, bases, *args, **kwargs) | |
| if name != "Serializable" and ABC not in bases: | |
| if cls_obj.is_serializable(): | |
| SERIALIZABLE_REGISTRY[cls_obj.get_class_fullname()] = cls_obj | |
| else: | |
| NON_SERIALIZABLE_REGISTRY[cls_obj.get_class_fullname()] = cls_obj | |
| return cls_obj | |
| def is_serializable(mcs) -> bool: | |
| return False | |
| def get_class_fullname(mcs) -> str: | |
| return get_shortest_class_fullname(mcs) | |
| def _to_dict(mcs) -> Dict[str, Any]: | |
| return {} | |
| class Serializable(metaclass=SerializableMeta): | |
| def is_serializable(cls) -> bool: | |
| raise NotImplementedError | |
| def get_class_fullname(cls) -> str: | |
| raise NotImplementedError | |
| def _to_dict(self) -> Dict[str, Any]: | |
| raise NotImplementedError | |
| def to_dict(self, on_not_implemented_error: str = "raise") -> Dict[str, Any]: | |
| """ | |
| Take a transform pipeline and convert it to a serializable representation that uses only standard | |
| python data types: dictionaries, lists, strings, integers, and floats. | |
| Args: | |
| self: A transform that should be serialized. If the transform doesn't implement the `to_dict` | |
| method and `on_not_implemented_error` equals to 'raise' then `NotImplementedError` is raised. | |
| If `on_not_implemented_error` equals to 'warn' then `NotImplementedError` will be ignored | |
| but no transform parameters will be serialized. | |
| on_not_implemented_error (str): `raise` or `warn`. | |
| """ | |
| if on_not_implemented_error not in {"raise", "warn"}: | |
| raise ValueError( | |
| "Unknown on_not_implemented_error value: {}. Supported values are: 'raise' and 'warn'".format( | |
| on_not_implemented_error | |
| ) | |
| ) | |
| try: | |
| transform_dict = self._to_dict() | |
| except NotImplementedError as e: | |
| if on_not_implemented_error == "raise": | |
| raise e | |
| transform_dict = {} | |
| warnings.warn( | |
| "Got NotImplementedError while trying to serialize {obj}. Object arguments are not preserved. " | |
| "Implement either '{cls_name}.get_transform_init_args_names' or '{cls_name}.get_transform_init_args' " | |
| "method to make the transform serializable".format(obj=self, cls_name=self.__class__.__name__) | |
| ) | |
| return {"__version__": __version__, "transform": transform_dict} | |
| def to_dict(transform: Serializable, on_not_implemented_error: str = "raise") -> Dict[str, Any]: | |
| """ | |
| Take a transform pipeline and convert it to a serializable representation that uses only standard | |
| python data types: dictionaries, lists, strings, integers, and floats. | |
| Args: | |
| transform: A transform that should be serialized. If the transform doesn't implement the `to_dict` | |
| method and `on_not_implemented_error` equals to 'raise' then `NotImplementedError` is raised. | |
| If `on_not_implemented_error` equals to 'warn' then `NotImplementedError` will be ignored | |
| but no transform parameters will be serialized. | |
| on_not_implemented_error (str): `raise` or `warn`. | |
| """ | |
| return transform.to_dict(on_not_implemented_error) | |
| def instantiate_nonserializable( | |
| transform: Dict[str, Any], nonserializable: Optional[Dict[str, Any]] = None | |
| ) -> Optional[Serializable]: | |
| if transform.get("__class_fullname__") in NON_SERIALIZABLE_REGISTRY: | |
| name = transform["__name__"] | |
| if nonserializable is None: | |
| raise ValueError( | |
| "To deserialize a non-serializable transform with name {name} you need to pass a dict with" | |
| "this transform as the `lambda_transforms` argument".format(name=name) | |
| ) | |
| result_transform = nonserializable.get(name) | |
| if transform is None: | |
| raise ValueError( | |
| "Non-serializable transform with {name} was not found in `nonserializable`".format(name=name) | |
| ) | |
| return result_transform | |
| return None | |
| def from_dict( | |
| transform_dict: Dict[str, Any], | |
| nonserializable: Optional[Dict[str, Any]] = None, | |
| lambda_transforms: Union[Optional[Dict[str, Any]], str] = "deprecated", | |
| ) -> Optional[Serializable]: | |
| """ | |
| Args: | |
| transform_dict (dict): A dictionary with serialized transform pipeline. | |
| nonserializable (dict): A dictionary that contains non-serializable transforms. | |
| This dictionary is required when you are restoring a pipeline that contains non-serializable transforms. | |
| Keys in that dictionary should be named same as `name` arguments in respective transforms from | |
| a serialized pipeline. | |
| lambda_transforms (dict): Deprecated. Use 'nonserizalizable' instead. | |
| """ | |
| if lambda_transforms != "deprecated": | |
| warnings.warn("lambda_transforms argument is deprecated, please use 'nonserializable'", DeprecationWarning) | |
| nonserializable = typing.cast(Optional[Dict[str, Any]], lambda_transforms) | |
| register_additional_transforms() | |
| transform = transform_dict["transform"] | |
| lmbd = instantiate_nonserializable(transform, nonserializable) | |
| if lmbd: | |
| return lmbd | |
| name = transform["__class_fullname__"] | |
| args = {k: v for k, v in transform.items() if k != "__class_fullname__"} | |
| cls = SERIALIZABLE_REGISTRY[shorten_class_name(name)] | |
| if "transforms" in args: | |
| args["transforms"] = [from_dict({"transform": t}, nonserializable=nonserializable) for t in args["transforms"]] | |
| return cls(**args) | |
| def check_data_format(data_format: str) -> None: | |
| if data_format not in {"json", "yaml"}: | |
| raise ValueError("Unknown data_format {}. Supported formats are: 'json' and 'yaml'".format(data_format)) | |
| def save( | |
| transform: Serializable, filepath: str, data_format: str = "json", on_not_implemented_error: str = "raise" | |
| ) -> None: | |
| """ | |
| Take a transform pipeline, serialize it and save a serialized version to a file | |
| using either json or yaml format. | |
| Args: | |
| transform (obj): Transform to serialize. | |
| filepath (str): Filepath to write to. | |
| data_format (str): Serialization format. Should be either `json` or 'yaml'. | |
| on_not_implemented_error (str): Parameter that describes what to do if a transform doesn't implement | |
| the `to_dict` method. If 'raise' then `NotImplementedError` is raised, if `warn` then the exception will be | |
| ignored and no transform arguments will be saved. | |
| """ | |
| check_data_format(data_format) | |
| transform_dict = transform.to_dict(on_not_implemented_error=on_not_implemented_error) | |
| dump_fn = json.dump if data_format == "json" else yaml.safe_dump | |
| with open(filepath, "w") as f: | |
| dump_fn(transform_dict, f) # type: ignore | |
| def load( | |
| filepath: str, | |
| data_format: str = "json", | |
| nonserializable: Optional[Dict[str, Any]] = None, | |
| lambda_transforms: Union[Optional[Dict[str, Any]], str] = "deprecated", | |
| ) -> object: | |
| """ | |
| Load a serialized pipeline from a json or yaml file and construct a transform pipeline. | |
| Args: | |
| filepath (str): Filepath to read from. | |
| data_format (str): Serialization format. Should be either `json` or 'yaml'. | |
| nonserializable (dict): A dictionary that contains non-serializable transforms. | |
| This dictionary is required when you are restoring a pipeline that contains non-serializable transforms. | |
| Keys in that dictionary should be named same as `name` arguments in respective transforms from | |
| a serialized pipeline. | |
| lambda_transforms (dict): Deprecated. Use 'nonserizalizable' instead. | |
| """ | |
| if lambda_transforms != "deprecated": | |
| warnings.warn("lambda_transforms argument is deprecated, please use 'nonserializable'", DeprecationWarning) | |
| nonserializable = typing.cast(Optional[Dict[str, Any]], lambda_transforms) | |
| check_data_format(data_format) | |
| load_fn = json.load if data_format == "json" else yaml.safe_load | |
| with open(filepath) as f: | |
| transform_dict = load_fn(f) # type: ignore | |
| return from_dict(transform_dict, nonserializable=nonserializable) | |
| def register_additional_transforms() -> None: | |
| """ | |
| Register transforms that are not imported directly into the `albumentations` module. | |
| """ | |
| try: | |
| # This import will result in ImportError if `torch` is not installed | |
| import custom_albumentations.pytorch | |
| except ImportError: | |
| pass | |