Spaces:
				
			
			
	
			
			
		Configuration error
		
	
	
	
			
			
	
	
	
	
		
		
		Configuration error
		
	| """ | |
| Copyright (c) Microsoft Corporation. | |
| Licensed under the MIT license. | |
| This file contains primitives for multi-gpu communication. | |
| This is useful when doing distributed training. | |
| """ | |
| import pickle | |
| import time | |
| import torch | |
| import torch.distributed as dist | |
| from comfy.model_management import get_torch_device | |
| device = get_torch_device() | |
| def get_world_size(): | |
| if not dist.is_available(): | |
| return 1 | |
| if not dist.is_initialized(): | |
| return 1 | |
| return dist.get_world_size() | |
| def get_rank(): | |
| if not dist.is_available(): | |
| return 0 | |
| if not dist.is_initialized(): | |
| return 0 | |
| return dist.get_rank() | |
| def is_main_process(): | |
| return get_rank() == 0 | |
| def synchronize(): | |
| """ | |
| Helper function to synchronize (barrier) among all processes when | |
| using distributed training | |
| """ | |
| if not dist.is_available(): | |
| return | |
| if not dist.is_initialized(): | |
| return | |
| world_size = dist.get_world_size() | |
| if world_size == 1: | |
| return | |
| dist.barrier() | |
| def gather_on_master(data): | |
| """Same as all_gather, but gathers data on master process only, using CPU. | |
| Thus, this does not work with NCCL backend unless they add CPU support. | |
| The memory consumption of this function is ~ 3x of data size. While in | |
| principal, it should be ~2x, it's not easy to force Python to release | |
| memory immediately and thus, peak memory usage could be up to 3x. | |
| """ | |
| world_size = get_world_size() | |
| if world_size == 1: | |
| return [data] | |
| # serialized to a Tensor | |
| buffer = pickle.dumps(data) | |
| # trying to optimize memory, but in fact, it's not guaranteed to be released | |
| del data | |
| storage = torch.ByteStorage.from_buffer(buffer) | |
| del buffer | |
| tensor = torch.ByteTensor(storage) | |
| # obtain Tensor size of each rank | |
| local_size = torch.LongTensor([tensor.numel()]) | |
| size_list = [torch.LongTensor([0]) for _ in range(world_size)] | |
| dist.all_gather(size_list, local_size) | |
| size_list = [int(size.item()) for size in size_list] | |
| max_size = max(size_list) | |
| if local_size != max_size: | |
| padding = torch.ByteTensor(size=(max_size - local_size,)) | |
| tensor = torch.cat((tensor, padding), dim=0) | |
| del padding | |
| if is_main_process(): | |
| tensor_list = [] | |
| for _ in size_list: | |
| tensor_list.append(torch.ByteTensor(size=(max_size,))) | |
| dist.gather(tensor, gather_list=tensor_list, dst=0) | |
| del tensor | |
| else: | |
| dist.gather(tensor, gather_list=[], dst=0) | |
| del tensor | |
| return | |
| data_list = [] | |
| for tensor in tensor_list: | |
| buffer = tensor.cpu().numpy().tobytes() | |
| del tensor | |
| data_list.append(pickle.loads(buffer)) | |
| del buffer | |
| return data_list | |
| def all_gather(data): | |
| """ | |
| Run all_gather on arbitrary picklable data (not necessarily tensors) | |
| Args: | |
| data: any picklable object | |
| Returns: | |
| list[data]: list of data gathered from each rank | |
| """ | |
| world_size = get_world_size() | |
| if world_size == 1: | |
| return [data] | |
| # serialized to a Tensor | |
| buffer = pickle.dumps(data) | |
| storage = torch.ByteStorage.from_buffer(buffer) | |
| tensor = torch.ByteTensor(storage).to(device) | |
| # obtain Tensor size of each rank | |
| local_size = torch.LongTensor([tensor.numel()]).to(device) | |
| size_list = [torch.LongTensor([0]).to(device) for _ in range(world_size)] | |
| dist.all_gather(size_list, local_size) | |
| size_list = [int(size.item()) for size in size_list] | |
| max_size = max(size_list) | |
| # receiving Tensor from all ranks | |
| # we pad the tensor because torch all_gather does not support | |
| # gathering tensors of different shapes | |
| tensor_list = [] | |
| for _ in size_list: | |
| tensor_list.append(torch.ByteTensor(size=(max_size,)).to(device)) | |
| if local_size != max_size: | |
| padding = torch.ByteTensor(size=(max_size - local_size,)).to(device) | |
| tensor = torch.cat((tensor, padding), dim=0) | |
| dist.all_gather(tensor_list, tensor) | |
| data_list = [] | |
| for size, tensor in zip(size_list, tensor_list): | |
| buffer = tensor.cpu().numpy().tobytes()[:size] | |
| data_list.append(pickle.loads(buffer)) | |
| return data_list | |
| def reduce_dict(input_dict, average=True): | |
| """ | |
| Args: | |
| input_dict (dict): all the values will be reduced | |
| average (bool): whether to do average or sum | |
| Reduce the values in the dictionary from all processes so that process with rank | |
| 0 has the averaged results. Returns a dict with the same fields as | |
| input_dict, after reduction. | |
| """ | |
| world_size = get_world_size() | |
| if world_size < 2: | |
| return input_dict | |
| with torch.no_grad(): | |
| names = [] | |
| values = [] | |
| # sort the keys so that they are consistent across processes | |
| for k in sorted(input_dict.keys()): | |
| names.append(k) | |
| values.append(input_dict[k]) | |
| values = torch.stack(values, dim=0) | |
| dist.reduce(values, dst=0) | |
| if dist.get_rank() == 0 and average: | |
| # only main process gets accumulated, so only divide by | |
| # world_size in this case | |
| values /= world_size | |
| reduced_dict = {k: v for k, v in zip(names, values)} | |
| return reduced_dict | |