Spaces:
Sleeping
Sleeping
import gradio as gr | |
import os | |
import torch | |
import argparse | |
import torchvision | |
from pipelines.pipeline_videogen import VideoGenPipeline | |
from diffusers.schedulers import DDIMScheduler | |
from diffusers.models import AutoencoderKL | |
from diffusers.models import AutoencoderKLTemporalDecoder | |
from transformers import CLIPTokenizer, CLIPTextModel | |
from omegaconf import OmegaConf | |
import os, sys | |
sys.path.append(os.path.split(sys.path[0])[0]) | |
from models import get_models | |
import imageio | |
from PIL import Image | |
import numpy as np | |
from datasets import video_transforms | |
from torchvision import transforms | |
from einops import rearrange, repeat | |
from utils import dct_low_pass_filter, exchanged_mixed_dct_freq | |
from copy import deepcopy | |
import spaces | |
import requests | |
from datetime import datetime | |
import random | |
parser = argparse.ArgumentParser() | |
parser.add_argument("--config", type=str, default="./configs/sample.yaml") | |
args = parser.parse_args() | |
args = OmegaConf.load(args.config) | |
torch.set_grad_enabled(False) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
dtype = torch.float16 # torch.float16 | |
unet = get_models(args).to(device, dtype=dtype) | |
if args.enable_vae_temporal_decoder: | |
if args.use_dct: | |
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float64).to(device) | |
else: | |
vae_for_base_content = AutoencoderKLTemporalDecoder.from_pretrained(args.pretrained_model_path, subfolder="vae_temporal_decoder", torch_dtype=torch.float16).to(device) | |
vae = deepcopy(vae_for_base_content).to(dtype=dtype) | |
else: | |
vae_for_base_content = AutoencoderKL.from_pretrained(args.pretrained_model_path, subfolder="vae",).to(device, dtype=torch.float64) | |
vae = deepcopy(vae_for_base_content).to(dtype=dtype) | |
tokenizer = CLIPTokenizer.from_pretrained(args.pretrained_model_path, subfolder="tokenizer") | |
text_encoder = CLIPTextModel.from_pretrained(args.pretrained_model_path, subfolder="text_encoder", torch_dtype=dtype).to(device) # huge | |
# set eval mode | |
unet.eval() | |
vae.eval() | |
text_encoder.eval() | |
basedir = os.getcwd() | |
savedir = os.path.join(basedir, "samples/Gradio", datetime.now().strftime("%Y-%m-%dT%H-%M-%S")) | |
savedir_sample = os.path.join(savedir, "sample") | |
os.makedirs(savedir, exist_ok=True) | |
def update_and_resize_image(input_image_path, height_slider, width_slider): | |
if input_image_path.startswith("http://") or input_image_path.startswith("https://"): | |
pil_image = Image.open(requests.get(input_image_path, stream=True).raw).convert('RGB') | |
else: | |
pil_image = Image.open(input_image_path).convert('RGB') | |
original_width, original_height = pil_image.size | |
if original_height == height_slider and original_width == width_slider: | |
return gr.Image(value=np.array(pil_image)) | |
ratio1 = height_slider / original_height | |
ratio2 = width_slider / original_width | |
if ratio1 > ratio2: | |
new_width = int(original_width * ratio1) | |
new_height = int(original_height * ratio1) | |
else: | |
new_width = int(original_width * ratio2) | |
new_height = int(original_height * ratio2) | |
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS) | |
left = (new_width - width_slider) / 2 | |
top = (new_height - height_slider) / 2 | |
right = left + width_slider | |
bottom = top + height_slider | |
pil_image = pil_image.crop((left, top, right, bottom)) | |
return gr.Image(value=np.array(pil_image)) | |
def update_textbox_and_save_image(input_image, height_slider, width_slider): | |
pil_image = Image.fromarray(input_image.astype(np.uint8)).convert("RGB") | |
original_width, original_height = pil_image.size | |
ratio1 = height_slider / original_height | |
ratio2 = width_slider / original_width | |
if ratio1 > ratio2: | |
new_width = int(original_width * ratio1) | |
new_height = int(original_height * ratio1) | |
else: | |
new_width = int(original_width * ratio2) | |
new_height = int(original_height * ratio2) | |
pil_image = pil_image.resize((new_width, new_height), Image.LANCZOS) | |
left = (new_width - width_slider) / 2 | |
top = (new_height - height_slider) / 2 | |
right = left + width_slider | |
bottom = top + height_slider | |
pil_image = pil_image.crop((left, top, right, bottom)) | |
img_path = os.path.join(savedir, "input_image.png") | |
pil_image.save(img_path) | |
return gr.Textbox(value=img_path), gr.Image(value=np.array(pil_image)) | |
def prepare_image(image, vae, transform_video, device, dtype=torch.float16): | |
image = torch.as_tensor(np.array(image, dtype=np.uint8, copy=True)).unsqueeze(0).permute(0, 3, 1, 2) | |
image = transform_video(image) | |
image = vae.encode(image.to(dtype=dtype, device=device)).latent_dist.sample().mul_(vae.config.scaling_factor) | |
image = image.unsqueeze(2) | |
return image | |
def gen_video(input_image, prompt, negative_prompt, diffusion_step, height, width, scfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed): | |
torch.manual_seed(seed) | |
scheduler = DDIMScheduler.from_pretrained(args.pretrained_model_path, | |
subfolder="scheduler", | |
beta_start=args.beta_start, | |
beta_end=args.beta_end, | |
beta_schedule=args.beta_schedule) | |
videogen_pipeline = VideoGenPipeline(vae=vae, | |
text_encoder=text_encoder, | |
tokenizer=tokenizer, | |
scheduler=scheduler, | |
unet=unet).to(device) | |
# videogen_pipeline.enable_xformers_memory_efficient_attention() | |
transform_video = transforms.Compose([ | |
video_transforms.ToTensorVideo(), | |
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), | |
]) | |
if args.use_dct: | |
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float64).to(device) | |
else: | |
base_content = prepare_image(input_image, vae_for_base_content, transform_video, device, dtype=torch.float16).to(device) | |
if use_dctinit: | |
# filter params | |
print("Using DCT!") | |
base_content_repeat = repeat(base_content, 'b c f h w -> b c (f r) h w', r=15).contiguous() | |
# define filter | |
freq_filter = dct_low_pass_filter(dct_coefficients=base_content, percentage=dct_coefficients) | |
noise = torch.randn(1, 4, 15, 40, 64).to(device) | |
# add noise to base_content | |
diffuse_timesteps = torch.full((1,),int(noise_level)) | |
diffuse_timesteps = diffuse_timesteps.long() | |
# 3d content | |
base_content_noise = scheduler.add_noise( | |
original_samples=base_content_repeat.to(device), | |
noise=noise, | |
timesteps=diffuse_timesteps.to(device)) | |
# 3d content | |
latents = exchanged_mixed_dct_freq(noise=noise, | |
base_content=base_content_noise, | |
LPF_3d=freq_filter).to(dtype=torch.float16) | |
base_content = base_content.to(dtype=torch.float16) | |
videos = videogen_pipeline(prompt, | |
negative_prompt=negative_prompt, | |
latents=latents if use_dctinit else None, | |
base_content=base_content, | |
video_length=15, | |
height=height, | |
width=width, | |
num_inference_steps=diffusion_step, | |
guidance_scale=scfg_scale, | |
motion_bucket_id=100-motion_bucket_id, | |
enable_vae_temporal_decoder=args.enable_vae_temporal_decoder).video | |
save_path = args.save_img_path + 'temp' + '.mp4' | |
# torchvision.io.write_video(save_path, videos[0], fps=8, video_codec='h264', options={'crf': '10'}) | |
imageio.mimwrite(save_path, videos[0], fps=8, quality=7) | |
return save_path | |
if not os.path.exists(args.save_img_path): | |
os.makedirs(args.save_img_path) | |
with gr.Blocks() as demo: | |
gr.Markdown("<font color=red size=6.5><center>Cinemo: Consistent and Controllable Image Animation with Motion Diffusion Models</center></font>") | |
gr.Markdown( | |
"""<div style="display: flex;align-items: center;justify-content: center"> | |
[<a href="https://arxiv.org/abs/2407.15642">Arxiv Report</a>] | [<a href="https://https://maxin-cn.github.io/cinemo_project/">Project Page</a>] | [<a href="https://github.com/maxin-cn/Cinemo">Github</a>]</div> | |
""" | |
) | |
with gr.Column(variant="panel"): | |
with gr.Row(): | |
prompt_textbox = gr.Textbox(label="Prompt", lines=1) | |
negative_prompt_textbox = gr.Textbox(label="Negative prompt", lines=1) | |
with gr.Row(equal_height=False): | |
with gr.Column(): | |
with gr.Row(): | |
input_image = gr.Image(label="Input Image", interactive=True) | |
result_video = gr.Video(label="Generated Animation", interactive=False, autoplay=True) | |
generate_button = gr.Button(value="Generate", variant='primary') | |
with gr.Accordion("Advanced options", open=False): | |
gr.Markdown( | |
""" | |
- Input image can be specified using the "Input Image URL" text box or uploaded by clicking or dragging the image to the "Input Image" box. | |
- Input image will be resized and/or center cropped to a given resolution (320 x 512) automatically. | |
- After setting the input image path, press the "Preview" button to visualize the resized input image. | |
""" | |
) | |
with gr.Column(): | |
with gr.Row(): | |
input_image_path = gr.Textbox(label="Input Image URL", lines=1, scale=10, info="Press Enter or the Preview button to confirm the input image.") | |
preview_button = gr.Button(value="Preview") | |
with gr.Row(): | |
sample_step_slider = gr.Slider(label="Sampling steps", value=50, minimum=10, maximum=250, step=1) | |
with gr.Row(): | |
seed_textbox = gr.Slider(label="Seed", value=100, minimum=1, maximum=int(1e8), step=1, interactive=True) | |
# seed_textbox = gr.Textbox(label="Seed", value=100) | |
# seed_button = gr.Button(value="\U0001F3B2", elem_classes="toolbutton") | |
# seed_button.click(fn=lambda: gr.Textbox(value=random.randint(1, int(1e8))), inputs=[], outputs=[seed_textbox]) | |
with gr.Row(): | |
height = gr.Slider(label="Height", value=320, minimum=0, maximum=512, step=16, interactive=False) | |
width = gr.Slider(label="Width", value=512, minimum=0, maximum=512, step=16, interactive=False) | |
with gr.Row(): | |
txt_cfg_scale = gr.Slider(label="CFG Scale", value=7.5, minimum=1.0, maximum=20.0, step=0.1, interactive=True) | |
motion_bucket_id = gr.Slider(label="Motion Intensity", value=10, minimum=1, maximum=20, step=1, interactive=True) | |
with gr.Row(): | |
use_dctinit = gr.Checkbox(label="Enable DCTInit", value=True) | |
dct_coefficients = gr.Slider(label="DCT Coefficients", value=0.23, minimum=0, maximum=1, step=0.01, interactive=True) | |
noise_level = gr.Slider(label="Noise Level", value=985, minimum=1, maximum=999, step=1, interactive=True) | |
input_image.upload(fn=update_textbox_and_save_image, inputs=[input_image, height, width], outputs=[input_image_path, input_image]) | |
preview_button.click(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image]) | |
input_image_path.submit(fn=update_and_resize_image, inputs=[input_image_path, height, width], outputs=[input_image]) | |
EXAMPLES = [ | |
["./example/aircrafts_flying/0.jpg", "aircrafts flying" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100], | |
["./example/fireworks/0.jpg", "fireworks" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100], | |
["./example/flowers_swaying/0.jpg", "flowers swaying" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100], | |
["./example/girl_walking_on_the_beach/0.jpg", "girl walking on the beach" , 50, 320, 512, 7.5, True, 0.23, 985, 10, 200], | |
["./example/house_rotating/0.jpg", "house rotating" , 50, 320, 512, 7.5, True, 0.23, 985, 10, 100], | |
["./example/people_runing/0.jpg", "people runing" , 50, 320, 512, 7.5, True, 0.23, 975, 10, 100], | |
] | |
examples = gr.Examples( | |
examples = EXAMPLES, | |
fn = gen_video, | |
inputs=[input_image, prompt_textbox, sample_step_slider, height, width, txt_cfg_scale, use_dctinit, dct_coefficients, noise_level, motion_bucket_id, seed_textbox], | |
outputs=[result_video], | |
# cache_examples=True, | |
cache_examples="lazy", | |
) | |
generate_button.click( | |
fn=gen_video, | |
inputs=[ | |
input_image, | |
prompt_textbox, | |
negative_prompt_textbox, | |
sample_step_slider, | |
height, | |
width, | |
txt_cfg_scale, | |
use_dctinit, | |
dct_coefficients, | |
noise_level, | |
motion_bucket_id, | |
seed_textbox, | |
], | |
outputs=[result_video] | |
) | |
demo.launch(debug=False, share=True) |