Spaces:
Sleeping
Sleeping
import os | |
import io | |
import requests | |
import streamlit as st | |
from openai import OpenAI | |
from PyPDF2 import PdfReader | |
import urllib.parse | |
from dotenv import load_dotenv | |
from openai import OpenAI | |
from io import BytesIO | |
from streamlit_extras.colored_header import colored_header | |
from streamlit_extras.add_vertical_space import add_vertical_space | |
from streamlit_extras.switch_page_button import switch_page | |
import json | |
import pandas as pd | |
from st_aggrid import AgGrid, GridOptionsBuilder, GridUpdateMode, DataReturnMode | |
import time | |
import random | |
import aiohttp | |
import asyncio | |
from PyPDF2 import PdfWriter | |
load_dotenv() | |
# ---------------------- Configuration ---------------------- | |
st.set_page_config(page_title="Building Regulations Chatbot", layout="wide", initial_sidebar_state="expanded") | |
# Load environment variables from .env file | |
load_dotenv() | |
# Set OpenAI API key | |
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY")) | |
# ---------------------- Session State Initialization ---------------------- | |
if 'pdf_contents' not in st.session_state: | |
st.session_state.pdf_contents = [] | |
if 'chat_history' not in st.session_state: | |
st.session_state.chat_history = [] | |
if 'processed_pdfs' not in st.session_state: | |
st.session_state.processed_pdfs = False | |
if 'id_counter' not in st.session_state: | |
st.session_state.id_counter = 0 | |
if 'assistant_id' not in st.session_state: | |
st.session_state.assistant_id = None | |
if 'thread_id' not in st.session_state: | |
st.session_state.thread_id = None | |
if 'file_ids' not in st.session_state: | |
st.session_state.file_ids = [] | |
# ---------------------- Helper Functions ---------------------- | |
def get_vector_stores(): | |
try: | |
vector_stores = client.beta.vector_stores.list() | |
return vector_stores | |
except Exception as e: | |
return f"Error retrieving vector stores: {str(e)}" | |
def fetch_pdfs(city_code): | |
url = f"http://91.203.213.50:5000/oereblex/{city_code}" | |
response = requests.get(url) | |
if response.status_code == 200: | |
data = response.json() | |
print("First data:", data.get('data', [])[0] if data.get('data') else None) | |
return data.get('data', []) | |
else: | |
st.error(f"Failed to fetch PDFs for city code {city_code}") | |
return None | |
def download_pdf(url, doc_title): | |
# Add 'https://' scheme if it's missing | |
if not url.startswith(('http://', 'https://')): | |
url = 'https://' + url | |
try: | |
response = requests.get(url) | |
response.raise_for_status() # Raise an exception for bad status codes | |
# Sanitize doc_title to create a valid filename | |
sanitized_title = ''.join(c for c in doc_title if c.isalnum() or c in (' ', '_', '-')).rstrip() | |
sanitized_title = sanitized_title.replace(' ', '_') | |
filename = f"{sanitized_title}.pdf" | |
# Ensure filename is unique by appending the id_counter if necessary | |
if os.path.exists(filename): | |
filename = f"{sanitized_title}_{st.session_state.id_counter}.pdf" | |
st.session_state.id_counter += 1 | |
# Save the PDF content to a file | |
with open(filename, 'wb') as f: | |
f.write(response.content) | |
return filename | |
except requests.RequestException as e: | |
st.error(f"Failed to download PDF from {url}. Error: {str(e)}") | |
return None | |
# Helper function to upload file to OpenAI | |
def upload_file_to_openai(file_path): | |
try: | |
file = client.files.create( | |
file=open(file_path, 'rb'), | |
purpose='assistants' | |
) | |
return file.id | |
except Exception as e: | |
st.error(f"Failed to upload file {file_path}. Error: {str(e)}") | |
return None | |
def create_assistant(): | |
assistant = client.beta.assistants.create( | |
name="Building Regulations Assistant", | |
instructions="You are an expert on building regulations. Use the provided documents to answer questions accurately.", | |
model="gpt-4o-mini", | |
tools=[{"type": "file_search"}] | |
) | |
st.session_state.assistant_id = assistant.id | |
return assistant.id | |
def format_response(response, citations): | |
"""Format the response with proper markdown structure.""" | |
formatted_text = f""" | |
### Response | |
{response} | |
{"### Citations" if citations else ""} | |
{"".join([f"- {citation}\n" for citation in citations]) if citations else ""} | |
""" | |
return formatted_text.strip() | |
def response_generator(response, citations): | |
"""Generator for streaming response with structured output.""" | |
# First yield the response header | |
yield "### Response\n\n" | |
time.sleep(0.1) | |
# Yield the main response word by word | |
words = response.split() | |
for i, word in enumerate(words): | |
yield word + " " | |
# Add natural pauses at punctuation | |
if word.endswith(('.', '!', '?', ':')): | |
time.sleep(0.1) | |
else: | |
time.sleep(0.05) | |
# If there are citations, yield them with proper formatting | |
if citations: | |
# Add some spacing before citations | |
yield "\n\n### Citations\n\n" | |
time.sleep(0.1) | |
for citation in citations: | |
yield f"- {citation}\n" | |
time.sleep(0.05) | |
def chat_with_assistant(file_ids, user_message): | |
print("----- Starting chat_with_assistant -----") | |
print("Received file_ids:", file_ids) | |
print("Received user_message:", user_message) | |
# Create attachments for each file_id | |
attachments = [{"file_id": file_id, "tools": [{"type": "file_search"}]} for file_id in file_ids] | |
print("Attachments created:", attachments) | |
if st.session_state.thread_id is None: | |
print("No existing thread_id found. Creating a new thread.") | |
thread = client.beta.threads.create( | |
messages=[ | |
{ | |
"role": "user", | |
"content": user_message, | |
"attachments": attachments, | |
} | |
] | |
) | |
st.session_state.thread_id = thread.id | |
print("New thread created with id:", st.session_state.thread_id) | |
else: | |
print(f"Existing thread_id found: {st.session_state.thread_id}. Adding message to the thread.") | |
message = client.beta.threads.messages.create( | |
thread_id=st.session_state.thread_id, | |
role="user", | |
content=user_message, | |
attachments=attachments | |
) | |
print("Message added to thread with id:", message.id) | |
try: | |
thread = client.beta.threads.retrieve(thread_id=st.session_state.thread_id) | |
print("Retrieved thread:", thread) | |
except Exception as e: | |
print(f"Error retrieving thread with id {st.session_state.thread_id}: {e}") | |
return "An error occurred while processing your request.", [] | |
try: | |
run = client.beta.threads.runs.create_and_poll( | |
thread_id=thread.id, assistant_id=st.session_state.assistant_id | |
) | |
print("Run created and polled:", run) | |
except Exception as e: | |
print("Error during run creation and polling:", e) | |
return "An error occurred while processing your request.", [] | |
try: | |
messages = list(client.beta.threads.messages.list(thread_id=thread.id, run_id=run.id)) | |
print("Retrieved messages:", messages) | |
except Exception as e: | |
print("Error retrieving messages:", e) | |
return "An error occurred while retrieving messages.", [] | |
# Process the first message content | |
if messages and messages[0].content: | |
message_content = messages[0].content[0].text | |
print("Raw message content:", message_content) | |
annotations = message_content.annotations | |
citations = [] | |
seen_citations = set() | |
# Process annotations and citations | |
for index, annotation in enumerate(annotations): | |
message_content.value = message_content.value.replace(annotation.text, f"[{index}]") | |
if file_citation := getattr(annotation, "file_citation", None): | |
try: | |
cited_file = client.files.retrieve(file_citation.file_id) | |
citation_entry = f"[{index}] {cited_file.filename}" | |
if citation_entry not in seen_citations: | |
citations.append(citation_entry) | |
seen_citations.add(citation_entry) | |
except Exception as e: | |
print(f"Error retrieving cited file for annotation {index}: {e}") | |
# Create a container for the response with proper styling | |
response_container = st.container() | |
with response_container: | |
message_placeholder = st.empty() | |
streaming_content = "" | |
# Stream the response with structure | |
for chunk in response_generator(message_content.value, citations): | |
streaming_content += chunk | |
# Use markdown for proper formatting during streaming | |
message_placeholder.markdown(streaming_content + "▌") | |
# Final formatted response | |
final_formatted_response = format_response(message_content.value, citations) | |
message_placeholder.markdown(final_formatted_response) | |
return final_formatted_response, citations | |
else: | |
return "No response received from the assistant.", [] | |
# ---------------------- Streamlit App ---------------------- | |
# ---------------------- Custom CSS Injection ---------------------- | |
# Inject custom CSS to style chat messages | |
st.markdown(""" | |
<style> | |
/* Style for the chat container */ | |
.chat-container { | |
display: flex; | |
flex-direction: column; | |
gap: 1.5rem; | |
} | |
/* Style for individual chat messages */ | |
.chat-message { | |
margin-bottom: 1.5rem; | |
} | |
/* Style for user messages */ | |
.chat-message.user > div:first-child { | |
color: #1E90FF; /* Dodger Blue for "You" */ | |
font-weight: bold; | |
margin-bottom: 0.5rem; | |
} | |
/* Style for assistant messages */ | |
.chat-message.assistant > div:first-child { | |
color: #32CD32; /* Lime Green for "Assistant" */ | |
font-weight: bold; | |
margin-bottom: 0.5rem; | |
} | |
/* Style for the message content */ | |
.message-content { | |
padding: 1rem; | |
border-radius: 0.5rem; | |
line-height: 1.5; | |
} | |
.message-content h3 { | |
color: #444; | |
margin-top: 1rem; | |
margin-bottom: 0.5rem; | |
font-size: 1.1rem; | |
} | |
.message-content ul { | |
margin-top: 0.5rem; | |
margin-bottom: 0.5rem; | |
padding-left: 1.5rem; | |
} | |
.message-content li { | |
margin-bottom: 0.25rem; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |
page = st.sidebar.selectbox("Choose a page", ["Documents", "Home", "Admin"]) | |
if page == "Home": | |
st.title("Building Regulations Chatbot", anchor=False) | |
# Sidebar improvements | |
with st.sidebar: | |
colored_header("Selected Documents", description="Documents for chat") | |
if 'selected_pdfs' in st.session_state and not st.session_state.selected_pdfs.empty: | |
for _, pdf in st.session_state.selected_pdfs.iterrows(): | |
st.write(f"- {pdf['Doc Title']}") | |
else: | |
st.write("No documents selected. Please go to the Documents page.") | |
# Main chat area improvements | |
colored_header("Chat", description="Ask questions about building regulations") | |
# Chat container with custom CSS class | |
st.markdown('<div class="chat-container" id="chat-container">', unsafe_allow_html=True) | |
for chat in st.session_state.chat_history: | |
with st.container(): | |
if chat['role'] == 'user': | |
st.markdown(f""" | |
<div class="chat-message user"> | |
<div><strong>You</strong></div> | |
<div class="message-content">{chat['content']}</div> | |
</div> | |
""", unsafe_allow_html=True) | |
else: | |
st.markdown(f""" | |
<div class="chat-message assistant"> | |
<div><strong>Assistant</strong></div> | |
<div class="message-content">{chat['content']}</div> | |
</div> | |
""", unsafe_allow_html=True) | |
st.markdown('</div>', unsafe_allow_html=True) | |
# Inject JavaScript to auto-scroll the chat container | |
st.markdown(""" | |
<script> | |
const chatContainer = document.getElementById('chat-container'); | |
if (chatContainer) { | |
chatContainer.scrollTop = chatContainer.scrollHeight; | |
} | |
</script> | |
""", unsafe_allow_html=True) | |
# Chat input improvements | |
with st.form("chat_form", clear_on_submit=True): | |
user_input = st.text_area("Ask a question about building regulations...", height=100) | |
col1, col2 = st.columns([3, 1]) | |
with col2: | |
submit = st.form_submit_button("Send", use_container_width=True) | |
if submit and user_input.strip() != "": | |
# Add user message to chat history | |
st.session_state.chat_history.append({"role": "user", "content": user_input}) | |
if not st.session_state.file_ids: | |
st.error("Please process PDFs first.") | |
else: | |
with st.spinner("Generating response..."): | |
try: | |
response, citations = chat_with_assistant(st.session_state.file_ids, user_input) | |
# The response is already formatted, so we can add it directly to chat history | |
st.session_state.chat_history.append({ | |
"role": "assistant", | |
"content": response | |
}) | |
except Exception as e: | |
st.error(f"Error generating response: {str(e)}") | |
# Rerun the app to update the chat display | |
st.rerun() | |
# Footer improvements | |
add_vertical_space(2) | |
st.markdown("---") | |
col1, col2 = st.columns(2) | |
with col1: | |
st.caption("Powered by OpenAI GPT-4 and Pinecone") | |
with col2: | |
st.caption("© 2023 Your Company Name") | |
elif page == "Documents": | |
st.title("Document Selection") | |
city_code_input = st.text_input("Enter city code:", key="city_code_input") | |
load_documents_button = st.button("Load Documents", key="load_documents_button") | |
if load_documents_button and city_code_input: | |
with st.spinner("Fetching PDFs..."): | |
pdfs = fetch_pdfs(city_code_input) | |
if pdfs: | |
st.session_state.available_pdfs = pdfs | |
st.success(f"Found {len(pdfs)} PDFs") | |
else: | |
st.error("No PDFs found") | |
if 'available_pdfs' in st.session_state: | |
st.write(f"Total PDFs: {len(st.session_state.available_pdfs)}") | |
# Create a DataFrame from the available PDFs | |
df = pd.DataFrame(st.session_state.available_pdfs) | |
# Select and rename only the specified columns | |
df = df[['municipality', 'abbreviation', 'doc_title', 'file_title', 'file_href', 'enactment_date', 'prio']] | |
df = df.rename(columns={ | |
"municipality": "Municipality", | |
"abbreviation": "Abbreviation", | |
"doc_title": "Doc Title", | |
"file_title": "File Title", | |
"file_href": "File Href", | |
"enactment_date": "Enactment Date", | |
"prio": "Prio" | |
}) | |
# Add a checkbox column to the DataFrame at the beginning | |
df.insert(0, "Select", False) | |
# Configure grid options | |
gb = GridOptionsBuilder.from_dataframe(df) | |
gb.configure_default_column(enablePivot=True, enableValue=True, enableRowGroup=True) | |
gb.configure_column("Select", header_name="Select", cellRenderer='checkboxRenderer') | |
gb.configure_column("File Href", cellRenderer='linkRenderer') | |
gb.configure_selection(selection_mode="multiple", use_checkbox=True) | |
gb.configure_side_bar() | |
gridOptions = gb.build() | |
# Display the AgGrid | |
grid_response = AgGrid( | |
df, | |
gridOptions=gridOptions, | |
enable_enterprise_modules=True, | |
update_mode=GridUpdateMode.MODEL_CHANGED, | |
data_return_mode=DataReturnMode.FILTERED_AND_SORTED, | |
fit_columns_on_grid_load=False, | |
) | |
# Get the selected rows | |
selected_rows = grid_response['selected_rows'] | |
# Debug: Print the structure of selected_rows | |
st.write("Debug - Selected Rows Structure:", selected_rows) | |
if st.button("Process Selected PDFs"): | |
if len(selected_rows) > 0: # Check if there are any selected rows | |
# Convert selected_rows to a DataFrame | |
st.session_state.selected_pdfs = pd.DataFrame(selected_rows) | |
st.session_state.assistant_id = create_assistant() | |
with st.spinner("Processing PDFs and creating/updating assistant..."): | |
file_ids = [] | |
for _, pdf in st.session_state.selected_pdfs.iterrows(): | |
# Debug: Print each pdf item | |
st.write("Debug - PDF item:", pdf) | |
file_href = pdf['File Href'] | |
doc_title = pdf['Doc Title'] | |
# Pass doc_title to download_pdf | |
file_name = download_pdf(file_href, doc_title) | |
if file_name: | |
file_path = f"./{file_name}" | |
file_id = upload_file_to_openai(file_path) | |
if file_id: | |
file_ids.append(file_id) | |
else: | |
st.warning(f"Failed to upload {doc_title}. Skipping this file.") | |
else: | |
st.warning(f"Failed to download {doc_title}. Skipping this file.") | |
st.session_state.file_ids = file_ids | |
st.success("PDFs processed successfully. You can now chat on the Home page.") | |
else: | |
st.warning("Select at least one PDF.") | |
elif page == "Admin": | |
st.title("Admin Panel") | |
st.header("Vector Stores Information") | |
vector_stores = get_vector_stores() | |
json_vector_stores = json.dumps([vs.model_dump() for vs in vector_stores]) | |
st.write(json_vector_stores) | |
# Add a button to go back to the main page | |